650 research outputs found

    Mitochondrial DNA signals of late glacial recolonization of Europe from near Eastern refugia

    Get PDF
    Human populations, along with those of many other species, are thought to have contracted into a number of refuge areas at the height of the last Ice Age. European populations are believed to be, to a large extent, the descendants of the inhabitants of these refugia, and some extant mtDNA lineages can be traced to refugia in Franco-Cantabria (haplogroups H1, H3, V, and U5b1), the Italian Peninsula (U5b3), and the East European Plain (U4 and U5a). Parts of the Near East, such as the Levant, were also continuously inhabited throughout the Last Glacial Maximum, but unlike western and eastern Europe, no archaeological or genetic evidence for Late Glacial expansions into Europe from the Near East has hitherto been discovered. Here we report, on the basis of an enlarged whole-genome mitochondrial database, that a substantial, perhaps predominant, signal from mitochondrial haplogroups J and T, previously thought to have spread primarily from the Near East into Europe with the Neolithic population, may in fact reflect dispersals during the Late Glacial period, ?19–12 thousand years (ka) ago.<br/

    Targeting metabolic activity in high-risk neuroblastoma through Monocarboxylate Transporter 1 (MCT1) inhibition

    Full text link
    Amplification of the MYCN oncogene occurs in ~25% of primary neuroblastomas and is the single most powerful biological marker of poor prognosis in this disease. MYCN transcriptionally regulates a range of biological processes important for cancer, including cell metabolism. The MYCN-regulated metabolic gene SLC16A1, encoding the lactate transporter monocarboxylate transporter 1 (MCT1), is a potential therapeutic target. Treatment of neuroblastoma cells with the MCT1 inhibitor SR13800 increased intracellular lactate levels, disrupted the nicotinamide adenine dinucleotide (NADH/NAD+) ratio, and decreased intracellular glutathione levels. Metabolite tracing with 13C-glucose and 13C-glutamine following MCT1 inhibitor treatment revealed increased quantities of tricarboxylic acid (TCA) cycle intermediates and increased oxygen consumption rate. MCT1 inhibition was highly synergistic with vincristine and LDHA inhibition under cell culture conditions, but this combination was ineffective against neuroblastoma xenografts. Posttreatment xenograft tumors had increased synthesis of the MCT1 homolog MCT4/SLC16A, a known resistance factor to MCT1 inhibition. We found that MCT4 was negatively regulated by MYCN in luciferase reporter assays and its synthesis in neuroblastoma cells was increased under hypoxic conditions and following hypoxia-inducible factor (HIF1) induction, suggesting that MCT4 may contribute to resistance to MCT1 inhibitor treatment in hypoxic neuroblastoma tumors. Co-treatment of neuroblastoma cells with inhibitors of MCT1 and LDHA, the enzyme responsible for lactate production, resulted in a large increase in intracellular pyruvate and was highly synergistic in decreasing neuroblastoma cell viability. These results highlight the potential of targeting MCT1 in neuroblastoma in conjunction with strategies that involve disruption of pyruvate homeostasis and indicate possible resistance mechanisms

    How the weather affects the pain of citizen scientists using a smartphone app

    Get PDF
    Patients with chronic pain commonly believe their pain is related to the weather. Scientific evidence to support their beliefs is inconclusive, in part due to difficulties in getting a large dataset of patients frequently recording their pain symptoms during a variety of weather conditions. Smartphones allow the opportunity to collect data to overcome these difficulties. Our study Cloudy with a Chance of Pain analysed daily data from 2658 patients collected over a 15-month period. The analysis demonstrated significant yet modest relationships between pain and relative humidity, pressure and wind speed, with correlations remaining even when accounting for mood and physical activity. This research highlights how citizen-science experiments can collect large datasets on real-world populations to address long-standing health questions. These results will act as a starting point for a future system for patients to better manage their health through pain forecasts

    The Case for Visual Analytics of Arsenic Concentrations in Foods

    Get PDF
    Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species

    Two-electron spin correlations in precision placed donors in silicon

    Get PDF
    Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P−1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P−1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations
    corecore