105 research outputs found

    Phylogeography of the Microcoleus vaginatus (Cyanobacteria) from Three Continents – A Spatial and Temporal Characterization

    Get PDF
    It has long been assumed that cyanobacteria have, as with other free-living microorganisms, a ubiquitous occurrence. Neither the geographical dispersal barriers nor allopatric speciation has been taken into account. We endeavoured to examine the spatial and temporal patterns of global distribution within populations of the cyanobacterium Microcoleus vaginatus, originated from three continents, and to evaluate the role of dispersal barriers in the evolution of free-living cyanobacteria. Complex phylogeographical approach was applied to assess the dispersal and evolutionary patterns in the cyanobacterium Microcoleus vaginatus (Oscillatoriales). We compared the 16S rRNA and 16S-23S ITS sequences of strains which had originated from three continents (North America, Europe, and Asia). The spatial distribution was investigated using a phylogenetic tree, network, as well as principal coordinate analysis (PCoA). A temporal characterization was inferred using molecular clocks, calibrated from fossil DNA. Data analysis revealed broad genetic diversity within M. vaginatus. Based on the phylogenetic tree, network, and PCoA analysis, the strains isolated in Europe were spatially separated from those which originated from Asia and North America. A chronogram showed a temporal limitation of dispersal barriers on the continental scale. Dispersal barriers and allopatric speciation had an important role in the evolution of M. vaginatus. However, these dispersal barriers did not have a permanent character; therefore, the genetic flow among populations on a continental scale was only temporarily present. Furthermore, M. vaginatus is a recently evolved species, which has been going through substantial evolutionary changes

    Molecular phylogenetics and temporal diversification in the genus Aeromonas based on the sequences of five housekeeping genes

    Get PDF
    Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process

    Effects of small interfering RNAs targeting fascin on human esophageal squamous cell carcinoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fascin induces membrane protrusions and cell motility. Fascin overexpression was associated with poor prognosis, and its downregulation reduces cell motility and invasiveness in esophageal squamous cell carcinoma (ESCC). Using a stable knockdown cell line, we revealed the effect of fascin on cell growth, cell adhesion and tumor formation.</p> <p>Methods</p> <p>We examined whether fascin is a potential target in ESCC using <it>in vitro </it>and <it>in vivo </it>studies utilizing a specific siRNA. We established a stable transfectant with downregulated fascin from KYSE170 cell line.</p> <p>Results</p> <p>The fascin downregulated cell lines showed a slower growth pattern by 40.3% (p < 0.01) and detachment from collagen-coated plates by 53.6% (p < 0.01), compared to mock cells, suggesting that fascin plays a role in cell growth by maintaining cell adhesion to the extracellular matrix. <it>In vivo</it>, the tumor size was significantly smaller in the tumor with fascin knockdown cells than in mock cells by 95% at 30 days after inoculation.</p> <p>Conclusions</p> <p>These findings suggest that fascin overexpression plays a role in tumor growth and progression in ESCC and that cell death caused by its downregulation might be induced by cell adhesion loss. This indicates that targeting fascin pathway could be a novel therapeutic strategy for the human ESCC.</p

    Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria

    Get PDF
    Most free-living planktonic cells are streamlined and in spite of their limitations in functional flexibility, their vast populations have radiated into a wide range of aquatic habitats. Here we compared the metabolic potential of subgroups in the Alphaproteobacteria lineage SAR11 adapted to marine and freshwater habitats. Our results suggest that the successful leap from marine to freshwaters in SAR11 was accompanied by a loss of several carbon degradation pathways and a rewiring of the central metabolism. Examples for these are C1 and methylated compounds degradation pathways, the Entner–Doudouroff pathway, the glyoxylate shunt and anapleuretic carbon fixation being absent from the freshwater genomes. Evolutionary reconstructions further suggest that the metabolic modules making up these important freshwater metabolic traits were already present in the gene pool of ancestral marine SAR11 populations. The loss of the glyoxylate shunt had already occurred in the common ancestor of the freshwater subgroup and its closest marine relatives, suggesting that the adaptation to freshwater was a gradual process. Furthermore, our results indicate rapid evolution of TRAP transporters in the freshwater clade involved in the uptake of low molecular weight carboxylic acids. We propose that such gradual tuning of metabolic pathways and transporters toward locally available organic substrates is linked to the formation of subgroups within the SAR11 clade and that this process was critical for the freshwater clade to find and fix an adaptive phenotype.This work was supported by the Swedish Research Council (Grant Numbers 2012-4592 to AE and 2012-3892 to SB) and the Communiy Sequencing Programme of the US Department of Energy Joint Genome Institute. The work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231

    Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica

    Get PDF
    Salmonella enterica subspecies enterica is traditionally subdivided into serovars by serological and nutritional characteristics. We used Multilocus Sequence Typing (MLST) to assign 4,257 isolates from 554 serovars to 1092 sequence types (STs). The majority of the isolates and many STs were grouped into 138 genetically closely related clusters called eBurstGroups (eBGs). Many eBGs correspond to a serovar, for example most Typhimurium are in eBG1 and most Enteritidis are in eBG4, but many eBGs contained more than one serovar. Furthermore, most serovars were polyphyletic and are distributed across multiple unrelated eBGs. Thus, serovar designations confounded genetically unrelated isolates and failed to recognize natural evolutionary groupings. An inability of serotyping to correctly group isolates was most apparent for Paratyphi B and its variant Java. Most Paratyphi B were included within a sub-cluster of STs belonging to eBG5, which also encompasses a separate sub-cluster of Java STs. However, diphasic Java variants were also found in two other eBGs and monophasic Java variants were in four other eBGs or STs, one of which is in subspecies salamae and a second of which includes isolates assigned to Enteritidis, Dublin and monophasic Paratyphi B. Similarly, Choleraesuis was found in eBG6 and is closely related to Paratyphi C, which is in eBG20. However, Choleraesuis var. Decatur consists of isolates from seven other, unrelated eBGs or STs. The serological assignment of these Decatur isolates to Choleraesuis likely reflects lateral gene transfer of flagellar genes between unrelated bacteria plus purifying selection. By confounding multiple evolutionary groups, serotyping can be misleading about the disease potential of S. enterica. Unlike serotyping, MLST recognizes evolutionary groupings and we recommend that Salmonella classification by serotyping should be replaced by MLST or its equivalents

    Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC). Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC.</p> <p>Methods</p> <p>To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131) using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients.</p> <p>Results</p> <p>Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (<it>P </it>= 0.041), increased lymph node metastasis (<it>P </it>= 0.001), less differentiation (<it>P </it>= 0.005), increased recurrence (<it>P </it>= 0.038) and shorter survival (<it>P </it>= 0.004) of the patients.</p> <p>Conclusion</p> <p>In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and treatment of OSCC.</p

    Using social and behavioural science to support COVID-19 pandemic response

    Get PDF
    The COVID-19 pandemic represents a massive global health crisis. Because the crisis requires large-scale behaviour change and places significant psychological burdens on individuals, insights from the social and behavioural sciences can be used to help align human behavior with the recommendations of epidemiologists and public health experts. Here we discuss evidence from a selection of research topics relevant to pandemics, including work on navigating threats, social and cultural influences on behaviour, science communication, moral decision-making, leadership, and stress and coping. In each section, we note the nature and quality of prior research, including uncertainty and unsettled issues. We identify several insights for effective response to the COVID-19 pandemic, and also highlight important gaps researchers should move quickly to fill in the coming weeks and months

    Exploring perceptions of advertising ethics: an informant-derived approach

    Get PDF
    Whilst considerable research exists on determining consumer responses to pre-determined statements within numerous ad ethics contexts, our understanding of consumer thoughts regarding ad ethics in general remains lacking. The purpose of our study therefore is to provide a first illustration of an emic and informant-based derivation of perceived ad ethics. The authors use multi-dimensional scaling as an approach enabling the emic, or locally derived deconstruction of perceived ad ethics. Given recent calls to develop our understanding of ad ethics in different cultural contexts, and in particular within the Middle East and North Africa (MENA) region, we use Lebanon—the most ethically charged advertising environment within MENA—as an illustrative context for our study. Results confirm the multi-faceted and pluralistic nature of ad ethics as comprising a number of dimensional themes already salient in the existing literature but in addition, we also find evidence for a bipolar relationship between individual themes. The specific pattern of inductively derived relationships is culturally bound. Implications of the findings are discussed, followed by limitations of the study and recommendations for further research

    Global urban environmental change drives adaptation in white clover.

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    corecore