1,034 research outputs found

    High-Speed Modulation of a Terahertz Quantum Cascade Laser by Coherent Acoustic Phonon Pulses

    Get PDF
    The fast modulation of lasers is a fundamental requirement for applications in optical communications, high-resolution spectroscopy and metrology. In the terahertz-frequency range, the quantum-cascade laser (QCL) is a high-power source with the potential for high-frequency modulation. However, conventional electronic modulation is limited fundamentally by parasitic device impedance, and so alternative physical processes must be exploited to modulate the QCL gain on ultrafast timescales. Here, we demonstrate an alternative mechanism to modulate the emission from a QCL device, whereby optically-generated acoustic phonon pulses are used to perturb the QCL bandstructure, enabling fast amplitude modulation that can be controlled using the QCL drive current or strain pulse amplitude, to a maximum modulation depth of 6% in our experiment. We show that this modulation can be explained using perturbation theory analysis. While the modulation rise-time was limited to ~800 ps by our measurement system, theoretical considerations suggest considerably faster modulation could be possible

    High-speed modulation of a terahertz-frequency quantum-cascade laser using coherent acoustic phonon pulses

    Get PDF
    We demonstrate a new method for high-speed modulation of the electron transport and photon generation within a terahertz-frequency quantum-cascade laser (THz QCL). An amplified femtosecond laser is used to generate coherent acoustic-phonon pulses, which are injected into the device, resulting in an electronic bandstructure perturbation, with ~1-ns rise-time. The corresponding change in optical gain allows up to ~6% amplitude modulation, with results explained accurately using a perturbation-theory model

    Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    Full text link
    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation).Comment: 6 pages, 4 figure

    Acoustic band engineering in terahertz quantum-cascade lasers and arbitrary superlattices

    Get PDF
    Data associated with publication: "Acoustic band engineering in terahertz quantum-cascade lasers and arbitrary superlattices", the repository contains raw data presented in the paper

    Modulation of the THz Emission by a Quantum Cascade Laser using Coherent Acoustic Phonon Pulses

    Get PDF
    We use laser-generated coherent acoustic phonon (strain) pulses to modulate the electronic transport and THz emission of a 2.6 THz Ga(Al)As quantum cascade laser. The modulation amplitude is of the order of a few % and the rise time, limited by the measurement system response, is less than 1 nanosecond

    Calibration of photomultiplier arrays

    Get PDF
    A method is described that allows calibration and assessment of the linearity of response of an array of photomultiplier tubes. The method does not require knowledge of the photomultiplier single photoelectron response model and uses science data directly, thus eliminating the need for dedicated data sets. In this manner all photomultiplier working conditions (e.g. temperature, external fields, etc.) are exactly matched between calibration and science acquisitions. This is of particular importance in low background experiments such as ZEPLIN-III, where methods involving the use of external light sources for calibration are severely constrained

    Measurement and simulation of the muon-induced neutron yield in lead

    Get PDF
    A measurement is presented of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (w.e.) and a mean muon energy of 260 GeV. The measurement exploits the delayed coincidences between muons and the radiative capture of induced neutrons in a highly segmented tonne scale plastic scintillator detector. Detailed Monte Carlo simulations reproduce well the measured capture times and multiplicities and, within the dynamic range of the instrumentation, the spectrum of energy deposits. By comparing measurements with simulations of neutron capture rates a neutron yield in lead of (View the MathML source) ×10-3 neutrons/muon/(g/cm2) has been obtained. Absolute agreement between simulation and data is of order 25%. Consequences for deep underground rare event searches are discussed

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore