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We present theoretical methods for the analysis of acoustic phonon modes in superlattice struc-
tures, and terahertz-frequency quantum-cascade lasers (THz QCLs). Our generalised numerical
solution of the acoustic-wave equation provides good agreement with experimental pump—probe
measurements of the acoustic resonances in a THz QCL. We predict that the detailed layer struc-
ture in THz QCLs imprints up to ~2 GHz detuning of the acoustic mode spacing, which cannot be
seen in analytical models. This effect is strongest in devices with large and abrupt acoustic mis-
match between layers. We use an acoustic deformation potential within a density-matrix approach
to analyse electron transport induced in a range of the most common THz QCLs active-region design
schemes. We conclude that acoustic modes up to ~200 GHz are capable of significantly perturbing
QCL transport, highlighting their potential for ultra-fast modulation of laser emission.

I. INTRODUCTION

Superlattices consist of periodic layer sequences of two
or more materials. Acoustic waves (or phonons) within
such structures are perturbed by the variation in acoustic
impedance between the materials, causing their disper-
sion to differ from that of a bulk material. Furthermore,
the periodicity of the structure folds the acoustic-wave
dispersion into a Brillouin zone, [1, 2] characterised by a
set of acoustic stopbands (or eigenmodes).

Vibrational dynamics in superlattices have been stud-
ied experimentally using Raman scattering techniques [2—
6] and femtosecond pump-probe techniques, where typ-
ically longitudinal acoustic (LA) modes [7, 8] or (more
recently) transverse modes (TA) [9, 10] have been ex-
plored. Recent investigations have also demonstrated the
potential for acoustic waves in the ~100 GHz range to
modulate electron transport and tunnelling [11-13].

Terahertz-frequency quantum-cascade lasers (THz
QCLs) [14] are a specific case of interest, in which co-
herent THz photons are generated using electronic inter-
subband transitions within a complex multilayered super-
lattice. The picosecond electronic lifetimes in THz QCLs
potentially enable ultrafast light modulation [15] required
for frequency comb generation [16], active mode lock-
ing [17], amplitude, frequency [18] and phase stabilisa-
tion [19]. THz QCLs thus show potential for applications
in metrology [20], high resolution spectroscopy [21, 22]
and ultra-fast wireless communications [23].
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The most common THz QCL modulation techniques,
however, are limited to relatively low bandwidths. For
example, direct gain modulation through the applied
voltage is, in practice, limited to <35 GHz owing to par-
asitic inductance [24, 25]. Other approaches exploit the
possibility of controlling effective cavity losses [26, 27],
but are also limited owing to parasitic effects within the
modulating elements.

In previous work [28], we explored the potential to
overcome these limits through ultra-fast modulation of
THz QCLs using bulk acoustic waves. Although acous-
tic phonons have a weaker effect than optical phonons on
electron transport in THz QCLs, externally generated
acoustic pulses can exploit the picosecond-scale dynam-
ics of strain propagation through the device. However,
the complex layer structure within a THz QCL active
region perturbs the acoustic velocity across the superlat-
tice structure. As such, it is inaccurate to consider the
phonons as having bulk-like dispersion, or even that of a
simple Kronig—Penney superlattice. There is also a range
of different design schemes for THz QCLs, with vary-
ing electronic transport behaviour [29], and it is unclear
which scheme most susceptible to acoustic modulation.
It is therefore important to develop a detailed and accu-
rate understanding of acoustic phonon dispersion within
a QCL, and their effect on electron transport in order to
explore and, ultimately, optimise this effect.

We have therefore developed an “envelope function”-
like model to study acoustic phonon modes in arbitrary
semiconductor heterostructures. Although transfer-
matrix methods are widely used to find the eigenmodes of
wavelike functions in simple structures with well-defined
layers, they scale poorly to larger or more complex struc-
tures, and are unsuitable for systems with diffuse inter-



faces. We therefore use a finite-difference discretisation
scheme to analyse the acoustic modes in superlattices
with arbitrary interface geometries. We couple the acous-
tic perturbation to the strain in a density-matrix model
for electron transport in a THz QCL, and use this to
analyse the strength of the acoustic modulation effect in
a range of QCL design schemes.

In Section II, we present our theoretical model for
acoustic phonon modes in arbitrary heterostructures and
in Section III, we validate this against experimental
pump-probe measurements of a THz QCL structure [28].
In Section IV, we use the model to simulate and analyse
the acoustic phonon mode structure in three exemplar
THz QCL active region designs, along with several super-
lattice structures with diffuse layer profiles. We demon-
strate the advantages of using a finite-difference eigen-
value calculation compared with a more commonly used
transfer-matrix approach [8]. We also demonstrate that
the acoustic mode frequencies in THz QCLs are aperi-
odic, as a result of the complex multi-layer heterostruc-
tures used in their active regions. In Section V, we con-
sider the effect of acoustic phonon modes on electron
transport in THz QCLs by employing a density matrix
transport model [30, 31]. We discuss prospects for acous-
tic modulation of THz emission from QCLs and predict
the QCL design schemes that would be most susceptible
to the effect.

II. ENVELOPE-FUNCTION MODEL OF
ACOUSTIC PHONON MODES IN ARBITRARY
HETEROSTRUCTURES

The starting point for our model is the acoustic wave
equation [32]:

0 0 0?
) p(nt) - eop(at) =0 (1)

where the acoustic-wave pressure p(z, t) depends on posi-
tion z (in the growth direction) and time ¢. Here, vs(2) is
acoustic velocity, which due to variation of heterostruc-
ture materials, has a z-dependent profile.

This equation can be solved using a variable separa-
tion method (Fourier method), closely resembling the en-
velope function approach, which is commonly employed
for solving the Schrodinger equation. If we assume
p(z,t) = pov(z)exp(—iwt), where pg is the wave ampli-
tude, w is the angular frequency and ¥(z) is the envelope
of the acoustic wave, equation (1) folds into:
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Analytical solutions of Equation (2) are possible for an
ideal acoustic cavity of length d, consisting of a homo-
geneous bulk medium with vg(z) = vpuk, surrounded by
impenetrable reflective surfaces, such that 1(0) = ¢(d) =
0. By assuming a plane-wave form of the normalised

acoustic wave function, ¥ (z) = exp(igz), standing-wave
solutions to Equation (2) are found, with equidistant
wave vectors, ¢, = nw/d and corresponding frequencies:
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where n is an integer representing phonon mode index.

For periodic superlattice structures, the phonon mode
is no longer confined to specific wave vectors, For a period
length dg), the normalized acoustic wave functions take
a Bloch form, such that v¢g(z) = uq(2)exp(igz). This
consists of an envelope function, with the same period-
icity as the superlattice, u,(z + dg1) = u4(z), multiplied
by a plane-wave exp(igz), with arbitrary wave vector q.
The latter can be understood as a steady rotation in the
complex plane, as the wave function extends across the
length of the structure.

The periodic nature of the structure allows the phonon
dispersion to be folded into the first Brillouin zone such
that |g| < gg, where gg = 7/dg. Two sets of symmetry
points can be defined within this zone: Brillouin Zone
Centre (BZC) modes with ¢ = 0, and Brillouin Zone Edge
(BZE) modes with ¢ = 7/dg, and represent cases where
P(z) = £¢(z+dq). It is important to note that the BZC
and BZE wave vectors are identical to those for standing
waves in an ideal cavity of length d = dg. Indeed, it is
a fundamental result of the Bloch model that the eigen-
modes of of an isolated unit-cell of a periodic system pro-
vide a close approximation to the BZE and BZC solutions
for a periodic structure [32]. It is, therefore, desirable
to find a computationally efficient means of computing
the single-period eigenmodes. There are some limita-
tions to this single-period approach: only the BZC/BZE
standing-wave solutions can be computed, and the width
of the frequency stopband around these points cannot be
determined. Although a more generalised periodic solver
would be required to overcome these limitations, our ap-
proach allows rapid and direct computation of the solu-
tions, and can be applied to arbitrary heterostructures
including those with poorly-defined interfaces.

Eq. 2 can be discretised using a finite-difference ap-
proximation by defining samples of the wave-function and
acoustic velocity at evenly-spaced points ¢ along the z di-
rection:

aitbi—1 + by + cithip1 = Wi (4)
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The half-integer samples of squared velocity that typi-
cally arise in central finite differences [32], are taken as



the spatial-average of neighbouring points. It may now
be solved by rewriting as a tridiagonal matrix equation:

Hy = w?e) (8)
where
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The eigenvectors of the H matrix give the envelopes
of the acoustic wave ¥ (z) for each mode, and the corre-
sponding eigenvalues give the square of the angular fre-
quency w.

This solution approach provides several advantages
over commonly applied layer-by-layer transfer matrix
methods [8]. All eigenvalues are computed simultane-
ously to machine precision, rather requiring a separate
root-finding process for each mode. The numerical pre-
cision of the obtained eigenvalues can therefore be in-
creased in a straightforward way by increasing the spatial
mesh density. The most significant advantage, though,
is that arbitrary heterostructure profiles may be consid-
ered, including diffuse structures, in which layers are not
separated by abrupt interfaces, without any increase in
computational expense.

Our model can thus be applied directly to complex pe-
riodic heterostructures such as GaAs/Al,Ga;_,As THz
QCL gain media (where typically z = 0.1-0.3). Although
the acoustic velocity varies only by < 5% between the
layers in typical structures, this represents a potentially
very large margin of error for the design of high-precision
radio-frequency modulators and transducers. As such,
it is instructive to compare the numerical results of our
model to analytical solutions for a bulk medium of iden-
tical length.

An improvement to the homogeneous-material model
can be obtained by taking a reciprocal average of the
ratios between the total length d; and acoustic velocity
vy in each layer [ of the structure [8]:
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Here, w; can be interpreted as the resonant frequency
of each isolated layer. The latter simplified expres-
sion denotes the most common case, in which the su-
perlattice contains only two materials (i.e., alternating
well and barrier layers). In this work, we have used
Vbulk = 4710 ms™!, va1as = 5650 ms~!, while the acous-
tic velocity in an arbitrary Al,Ga;_,As barrier alloy
was evaluated through linear interpolation as vparrier =
Vbulk +  + (VAIAs — Ubulk) MS™ L.

Wavg,n

(10)

Equations (3) and (10) provide simple approximations
to the exact solution of Equation (2), in which the spatial
variation of acoustic velocity is ignored. We define the
frequency deviations of these approximate solutions from
the exact numerical values f,, as:
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These deviations allow us to determine the extent to
which the detailed superlattice layer structure affects the
phonon modes, and investigate the prospect of phononic
bandstructure engineering. It is important to note that
the model in Eq. (2) implicitly assumes linear dispersion
of the acoustic phonon branch, which may not be valid for
modes with high index n, unless a frequency dependent
correction is introduced in vs. Experimental work [10]
typically reports modes up to 1 THz, with higher modes
lost to dispersion. For this reason, we will limit analysis
to the first 100 modes since this accounts for frequencies
up to 1 THz for most cases of interest in the following
sections.

III. PUMP-PROBE CHARACTERIZATION OF
2.8-THZ QCL GAIN MEDIA

To validate our arbitrary-heterostructure model, we
compare its predictions with experimental measurements
of phonon modes in a complex THz QCL heterostructure
we have previously used for time-domain acoustic mod-
ulation studies [28]. This QCL comprises 88 periods of
a GaAs/Aly 14Gag sgAs nine-well ‘hybrid’ bandstructure
design and lases around 2.8 THz [33]. The 13.9-pm-thick
QCL active region was grown using molecular-beam epi-
taxy on a 150-pm-thick semi-insulating GaAs substrate,
as described in [28].

Here, we present experimental measurements of the
phonon modes in the QCL gain media using asyn-
chronous optical sampling (ASOPS) femtosecond opti-
cal pump—probe techniques. An unprocessed sample of
the same epitaxially-grown wafer as in [28] was used in
this study (i.e., without a ridge-waveguide or electrical
contact deposition). A 50-nm-thick aluminium film was
deposited on the bottom surface of a section of semi-
conductor wafer (the substrate), to act as an acoustic
transducer.

Two ASOPS measurement schemes, shown in Figure 1,
were used. In each of these, a femtosecond pump laser is
used to generate acoustic waves within the semiconduc-
tor sample. A delayed probe-laser pulse is then used to
measure small changes over time in the reflectivity of the
sample surface, AR/R, resulting from the strain wave
propagating through the sample. The Fourier transform
of the resulting temporal trace then gives the spectrum
of phonon modes.
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FIG. 1. Schematic illustrations of ASOPS experimental con-
figurations, showing (a) reflection mode, and (b) transmission
mode geometries.

In the scheme in Fig. 1(a), the top of the epitaxial QCL
active region stack was pumped directly with A = 810 nm
pulses with a fluence of 0.6 mJ cm ™2, and with the sample
at room temperature. It was probed on the same surface
with A = 810nm pulses with a fluence of 20 pJ cm 2. In
this configuration, absorption of the pump light excites
coherent phonons with wave vectors corresponding to the
periodicity of the QCL structure (i.e., the ¢ = 0 modes
in the folded dispersion). These modes do not strictly
satisfy the selection rules for detection by the probe laser
(i.e. q¢ = 2kr,, where ki, is the photon wave vector of
the optical probe). However, due to the finite absorp-
tion length of the probe light in the structure and the
bandwidth of the laser pulses, the excited ¢ = 0 modes
become observable in this scheme [34].

The top panel in Fig. 2 shows the experimental re-
flectivity spectrum obtained, using an offset of 800 Hz
between the pump and probe laser repetition rates. This
provided measurements of the wafer reflectivity at inter-
vals of 640 fs, over a total 1282 ns sampling window, giv-
ing a spectral resolution of 780 MHz. Phonon modes are
observed in the resulting spectrum at 35 GHz, 42 GHz,
and 69 GHz.

For comparison, the bottom panel shows the approxi-
mate folded dispersion relation, which was calculated us-
ing the BZC and BZE modes obtained by solving Eq. (2)
for a single period of the QCL structure. The calcu-
lated modes (to 3 s.f. precision) were 17.4, 34.7, 52.1,
69.5, 86.8, 104, 121, 139, 156, 174 and 191 GHz, where
only the BZC modes (highlighted in bold) are detectable
in this scheme. The pink arrows in Fig. 2 are therefore
identifiable (to within 1 GHz) as the first two BZC modes
of the heterostructure. The orange arrow in Fig. 2 indi-
cates a mode at 42 GHz, which does not correspond to
any calculated BZE/BZC modes of the heterostructure.
Instead, this is identifiable as a result of Brillouin scat-
tering, i.e. interference between reflections of the probe
pulse from the surface and from a strain pulse within
the sample, with a frequency given by 2nvs/A = 42 GHz,
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FIG. 2. Experimental probe reflectivity spectrum (top), ob-
tained using a reflection-mode ASOPS geometry, and folded
dispersion of the first Brillouin zone (bottom), obtained by
solving Eq. (2) for a single period of the QCL. Blue and red
circles indicate BZC and BZE modes respectively.
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FIG. 3. Experimental probe reflectivity spectrum (top), us-
ing the configuration in Fig. 1(b), and acoustic dispersion
resulting from model in Equation (2). Solid blue lines rep-
resent the phonon dispersion, folded into the first Brillouin
zone, while dashed lines represent the extended dispersion at
higher phonon wave vectors. The red dashed line corresponds
to ¢ = 2ki, and the red solid line shows this folded into the
first phonon Brillouin zone.

where n = 3.68 is the refractive index of the medium.
In the second scheme, shown in Fig. 1(b), the
QCL structure was pumped indirectly, using broadband
picosecond-duration acoustic strain pulses. These were
generated by absorbing a A = 800 nm pulse in a ~50-nm-
thick Al film on the opposite side of the GaAs substrate
to which the QCL structure was grown. The sample was



cooled in a helium cryostat to 10K, so that the sub-
strate was transparent to the high-frequency phonons in
the pulse. The strain pulses are bipolar in form with
approximately 20ps duration, and the corresponding
broad-bandwidth phonon spectrum is peaked at about
50 GHz [35]. When the strain pulse enters the QCL struc-
ture, it is able to excite any phonon mode within the
bandwidth of the pulse (i.e., not only the ¢ = 0 modes).

As in the first scheme, the phonons in the QCL struc-
ture were detected through changes in the reflected probe
intensity. In this case, however, phonon modes that
satisfy the selection rule, ¢ = 2k, = 4mwn/\, are de-
tected by the probe, and are the most prominent in the
measured spectrum. For this reason, the probe wave-
length A = 810 nm influences the detected mode frequen-
cies. Since the probe wavevector lies outside the first
acoustic Brillouin zone (2k;, > ¢p), the selection rule
may be folded into the zone such that ¢ = 2k, — 2¢p,
which is graphically illustrated by horizontal red lines
in Fig. 3. The modes that are detected by this scheme
thus correspond to intersections between the acoustic
dispersion ¢(f) and the red line at 2k, — 2gg. As our
model detects the BZC/BZE modes of the superlattice,
the simplest approximation for the dispersion relation is
q(f) = 27|f — fon|/Vbu where fa, correspond to the
BZC modes, depicted by blue circles in Fig. 3.

f=fon % <Ubu11:\nref B vzljllk) (12)

For the measurement in Fig. 3, the intersection points
corresponding to Eq. (12) are f = fa, £8.79 [GHz].
This yields predicted spectral peaks at 8.79, 25.9, 43.5,
60.7, 78.2, 95.3, 113 etc. The experimental data peaks in
Fig. 3 are found at 9, 26, 44, 62, 79, 97, 114 etc, in good
agreement with the theoretical predictions. The accurate
prediction of acoustic eigenmodes in this structure gives
confidence in the use of the model to analyze and pre-
dict such effects a wider range of heterostructures in the
following sections.

We note that further improvement between predicted
and measured peaks could be made in Eq. (12). The
acoustic velocity for each even eigenmode can be evalu-
ated better by using the eigenvector solutions of Eq. (2)
as the orthonormal basis, in order to calculate the prob-
able acoustic velocity of each mode as the expectation
value v, =< ¥, |v(2)|tp, >. Similarly, the refractive in-
dex of nyer = 3.68 corresponds to the bulk value of GaAs,
if weighted average is taken, depending on the content of
AlAs in the period, n,ef = 3.64 which changes Eq. (12) to
predict sidebands around even modes as f = fo, +8.33
[GHz], we could also calculate refractive index expecta-
tion value for each stopband as nyer =< Wy |Nret (2)|Yn >.
In [10] the authors accounted for the mismatch between
measurement and theory by assuming fitting nominal
layer thickness growth variation of ~3%, however we note
that numerical solutions of Eq. (2) provide significant
precision improvement than the bulk approximation for

BZE and BZC modes. Detected data in Fig. 3 has fi-
nite bandwidth around each detected modes, where sig-
nal even has contributions around ¢ = ¢gp (the odd stop-
bands) which occur due to complex phonon-photon inter-
actions and material fluctuations that are not considered
in our model.

IV. ACOUSTIC BANDSTRUCTURE
ENGINEERING

As the acoustic velocity mismatch is relatively small in
practical GaAs/AlGaAs heterostructures, the BZE/BZC
modes are approximately evenly spaced, as expected
from Eq. (3). However, the heterostructure layer compo-
sition introduces some deviation from these approximate
solutions, which could potentially allow more precise de-
sign of acoustic bandstructure. We predict that this devi-
ation would be enhanced in heterostructures with greater
variation of acoustic velocity between layers, for example,
in superlattices with a greater Al content in the barrier
alloy. In this section, we explore this deviation for a range
of superlattice structures, and discuss the prospects for
bandstructure engineering.

A. THz QCL gain media

The resonant acoustic modes are approximately
equidistant both numerically and experimentally for the
‘hybrid” THz QCL structure we considered in the pre-
vious section. QCL design schemes can, however, differ
considerably in terms of period length, and barrier alloy
composition, which are key parameters in Eq. (10). We
will therefore consider four exemplar THz QCL struc-
tures with considerable variation in their layer composi-
tion, which are detailed in the Appendix:

e Device A: the hybrid QCL design discussed in
the previous section, which employs a nine-
well GaAs/Alj ,,Gag.ssAs heterostructure, of total
1362 A period length [28].

e Device B: an LO-phonon depopulated design [10],
which employs a three-well GaAs/Al,-Gag gsAs
design, of total 643 A period length.

e Device C: a  bound-to-continuum (BTC)
design [30], which employs an eight well
GaAs/Al, ;GaggAs heterostructure, of total

1150 A period length.

e Device D: an LO-phonon depopulated design with
very high Al content in the barrier alloy [36], which
employs a two-well, GaAs/Al, ;Gag.7As design, of
total 269.3 A period length.

The inset in Fig. 4 shows the deviation between consec-
utive modes in each of these structures, as obtained from
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FIG. 4. Frequency offset from the bulk (top) and average
(bottom) approximation calculated by Eq. (11) for QCL de-
vices A-D. Inset: the frequency difference between consecutive
resonant acoustic modes for the corresponding structures.

solving Eq. (2) numerically. The results for Devices A
and B are in good agreement with the mode spacing seen
experimentally in Section III and in Ref. [10] respectively.

The top and bottom panels of the figure show the de-
viation between the exact numerical solution of Eq. (2)
and the approximations for homogeneous media, as given
in Eq. (11). The deviation from the homogeneous model
is greatest for Device D, and smallest for Device C, owing
to the large acoustic-velocity mismatch between layers in
the heterostructure. Device D also exhibits a periodic
(An = 10) variation in the deviation from the analyti-
cal solutions, which we will separately examine later. In
each case, the deviation from Eq. (3) increases approxi-
mately linearly with respect to mode index, and is largest
for Device D. However, the deviation from Eq. (10) re-
mains approximately centred around zero for all mode
indices. We can conclude that the bulk approximation in
Eq. (3) underestimates the effective velocity of acoustic
modes in a realistic heterostructure, and creates signif-
icantly larger offsets than the average-velocity approxi-
mation in Eq. (10) whose estimation provides <2 GHz
mismatch from numerical values even for structures with
high barriers.

B. Superlattices with non-uniform layer profiles

One of the main advantages of the model in Eq. (2)
is its ability to model arbitrary heterostructure profiles,
such as those with poorly-defined interfaces arising from
interdiffusion or surface-segregation of alloy components
during epitaxial growth. We therefore consider three
exemplar superlattice structures with non-uniform layer
compositions, and analyse their mode structure:

e Device E: A step-barrier LO-phonon depopulated
THz QCL [37], that employs a three-well design
with two different barrier heights in its period (x =
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FIG. 5. Frequency offset from the bulk (top) and average
(bottom) approximation calculated by Eq. (11) for variable
barrier height LO phonon THz QCL structure [37] (Device
E), a parabolic quantum well superlattice (Device F) that
quadratically varies Al content z = 0—0.14 across 3000 A pe-
riod length and a parabolic quantum well (Device G) with
varying Al content 2 = 0 — 0.42 across 620 A well length. We
used a mono-layer step of 2.825 A for generating the parabolic
profiles. Inset: the frequency difference between consecutive
resonant acoustic modes for the corresponding structures.

0.15 and = = 0.075) and has 444 A period length.

e Device F: A wide parabolic quantum well
GaAs/Al_ Ga;_,As superlattice [38] that varies x =
0 — 0.14 across 3000 A period length.

e Device G: A narrow parabolic quantum well
GaAs/Al Ga;_,As superlattice [39] that varies
x=0—0.42 across 620 A period length.

Layer composition and functions that generate parabolic
profiles can be found in the Appendix.

In Fig. 5 we present the results of our calculations
on these structures. Device E is structurally similar to
the THz QCL structures analysed in Fig. 4, however it
displays a more pronounced noise-like variation between
consecutive modes in Fig. 5, even though its highest bar-
rier is * = 0.15 and we expected similar behaviour to
Device B. It is likely that the additional perturbation in
the heterostructure profile generates different resonance
effects. By contrast, the parabolic quantum well poten-
tials in Fig. 5 are very well described by the average
frequency formula in Eq. (10). This indicates that the
fine structure of the acoustic dispersion is a result of in-
terface mismatch within the heterostructure, and this is
effectively damped by the use of diffuse interface geome-
try. The deviation is also larger in structures where there
is a larger mismatch in barrier height. This may be of
significant importance in material systems where there
is a large mismatch between acoustic velocities in well
and barrier material, or where the acoustic velocities are
larger than in GaAs, which can also apply in mid-infrared
QCL designs.
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FIG. 6. The frequency difference between consecutive reso-
nant acoustic modes for the corresponding structures analysed
in this section.

C. High precision frequency control

Our experimental and theoretical analysis in the pre-
vious sections has shown that the spacings between con-
secutive BZE and BZC modes in arbitrary superlattices
are determined by two factors. First, the average spac-
ing between modes is given to a reasonable level of ac-
curacy by Eq. (10). This is determined solely by the
length of the heterostructure period, and its average al-
loy composition. In other words, this “coarse” tuning
of the acoustic dispersion results from the periodicity of
the superlattice. The second, fine-tuning component re-
sults from the detailed layer structure of the superlat-
tice, and is most prominent in systems with a large, and
abrupt mismatch between the acoustic velocity in each
layer. To confirm that this effect is not caused by nu-
merical error, we used 20,000 spatial points for solving
the eigenvalue problem in Eq. (2), and performed an er-
ror convergence check. In some cases, this fine-tuning
component exhibits a periodicity, which we investigate
further in this section, through simulation of the previ-
ous QCL devices (A-E). We have included an additional
two-well GaAs/AlAs superlattice structure [8], denoted
‘Device H’ here, for which TA phonon spectra have previ-
ously been analysed experimentally. For this TA-branch
dispersion, vgaas = 3329 ms~! and vajas = 3957 ms~?
were assumed.

Fig. 6 shows the calculated BZE/BZC modes for each
of these devices. We observe that Devices B, C and H
do not exhibit a well-defined periodicity, Device D has
a clear periodic envelope every 18 modes, Device E has
an attenuating envelope every ~11 modes and Device A
has a weakly-defined envelope every ~44 modes. We hy-
pothesise that the observed periodicity is a consequence
of an intra-period resonance of the acoustic wave with a
layer within the superlattice. This is most likely to occur
within an AlGaAs barrier layer, as the acoustic veloc-
ity is higher than in the well layers, meaning the modes

are more likely to be confined in the barriers. For an ob-
served period An in Fig. 6, we can estimate the suspected
barrier layer width by assuming modes are equidistant
through average approximation in Eq. (10) and apply
the bulk-confinement approximation for that layer:

~ A'njrvbarrier

L~ (13)

Wavg
Interestingly, Eq. (13) is in good agreement with ob-
servations made in Fig. 6 as it provides layer width equal
to one of the dominant barriers in the corresponding de-
signs.

e Device D has a very clear An ~ 18 envelope and
Lqs = 16.44 A, which is close to the 17.5 A barrier
width within this structure.

e Device E has an attenuating envelope with An =~
11 envelope, and Lig = 41.21 A, which is related
to one of the three barriers of this structure (41, 43
and 46 A).

e Device H exhibits a Fourier Transform peak at
An ~ 6, and Lg = 18.65 A, which corresponds
to the only two 17 A barriers within the structure.

e Device A has a weak An ~ 44 period, and L4y =
31.66 A, which corresponds to multiple 31 A, bar-
riers within the structure.

The amplitude of variations in Fig. 6 can directly be
affected by increasing barrier height and therefore the
acoustic velocity in the barriers. In order to confirm our
estimate in Eq. (13), we alter the layer structure of stud-
ied devices as follows (layer composition is presented in
the Appendix):

e Device Dy: we double the thickness of the 17.5 A
barrier in Device D to confirm that the period of
oscillations halves.

e Device Ci: we make the 24-A barrier the largest in
Device C by replacing its material with pure AlAs
(x=1).

e Device Cy: we set two very tall x = 1 barriers in
Device C, a 24 A layer as in C; and a 30 A layer to
study the effect of having two dominant barriers in
the design.

e Device I: we consider a GaAs/AlAs heterostructure
with three 150 A wells separated by barriers of 20,
40 and 80 A. If the periodicity of the confinement
is caused by the barrier layers, this will create an
ideal periodicity matching condition.

e Device J: we consider a heterostructure with two
sets of identical wells and fixed barrier width as
shown in the Appendix. This should create a per-
fectly periodic structure that is independent of the
barrier height. To confirm this, we use z = 0.1 in
the barrier material.
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FIG. 7. The frequency difference between consecutive reso-
nant acoustic modes for altered structures that test validity

of approximation created by Eq. (13)

The results, shown in in Fig. 7, agree with our ap-
proximation in Eq. (13). Doubling the barrier width
of Device D reduced the periodicity to An ~ 9 in De-
vice D;, which corresponds to L9D1 = 34.82 A. Setting
the 24 A barrier in Device C to = 1 has fully con-
fined consecutive mode dependence for Device Cq, yield-
ing Lgol = 24.65 A. However, setting two very high bar-
riers in Cs results in a more complex mode structure,
and the Fourier transform of the data reveals peaks that
correspond to LG = 24.65 A and L} = 32.15 A, in
excellent agreement with the barriers whose heights were
increased. This result provides us with a fundamental un-
derstanding that the complex mode structure in Fig. 6 is
consequence of mixed contribution to the period due to
different barrier widths. We have observed clear period-
icity in Fig. 6 for Device D because it has two barriers
in approximately 1:2 ratio, Device E had several layers
of ~42 A width and similarly, Device A has multiple
31 A barrier layers. We also note that a high barrier
is not required to generate periodicity; any barrier that
is purposely dominant would impose its effect. In De-
vice A1, we purposely set the injection 41 A barrier to
x = 0.3 and this has generated the confinement in Fig. 7
that corresponds to L3Aj = 42.03 A. The Fourier trans-
formation of data corresponding to Device A; also shows
a peak that corresponds to L4A31 = 33.23 A, which is un-
derstandable as this device has five 31 A barriers in its
layer sequence (more information can be found in the
Appendix).

If wells have equal width, and all barriers widths are
in 1:2 ratio as in Device I, we expect to obtain perfect
periodicity. This can be observed in in Fig. 7 where the
periodicity corresponds to the layer width L5, = 20.68 A,
and the Fourier transform shows peaks also with 12 and
6 mode period due to the symmetry of the device. If all
barriers have equal width, perfect periodicity is attain-
able even when there is no significant difference in acous-
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FIG. 8. We analyse Structure D for several values of diffusion
length using the annealing model in [40]. Top and middle:
Frequency offset from the average approximation [Eq. (11)]
and its cumulative root mean square average, respectively.
Bottom: The frequency difference between consecutive reso-
nant modes.

tic velocity in wells and barriers as is the case in Device
J. The two well widths affect the phase of the observed
oscillation, while the 20 A barrier causes confinement ev-
ery 34 modes, which corresponds to L3, = 20.35 A when
applying the approximation in Eq. (13).

We note that the lack of periodicity in the parabolic
superlattices in Devices F and G can be understood by
Eq. (13) as well. The parabolic profiles of these de-
vices were generated on a spatial resolution of monolayer
thickness in GaAs, 2.825 A, and thus, regardless of the
acoustic velocity that would correspond to each spatial
segment, the resulting period in consecutive mode pro-
file would be too large to be observed. There is also no
dominant barrier layer, as these devices have a diffuse
distribution of Al content in their layer sequence. This
also raises an interesting effect with imperfect growth
and tolerance. The rectangular heterostrucutre profiles
in superlattice material systems may in reality undergo
interdiffusion process that result in diffuse profiles for
the superlattice interfaces. These effects are estimated
to have up to 15 A diffusion lengths [40-44]. In Fig. 8 we
model growth tolerances in structure D using an anneal-
ing approach [40] by assuming constant diffusion profile
across the superlattice. We find that observed periodic-
ity in Fig. 7 vanishes for modes with higher index and
larger diffusion lengths. This also results in smoother
dependence of the frequency offset from the average ap-
proximation (Eq. (11)) resulting in smaller r.m.s average.

The effect in Fig. 7 can be controlled and manipu-



lated through superlattice design, and this observation
opens multiple engineering opportunities. Furthermore,
the observed periodicity cannot be seen in the approxi-
mate approaches in Egs. (3) and (10) and only the nu-
merical consideration of Eq. (2) can explain the effect.
The fine-tuning control of frequency is a fundamental
trait in optical devices, thus the ability to perform anal-
ogous control of different acoustic resonant frequencies
through superlattice design could find an important use
in phononic applications. Conversely, our analysis shows
that the thickness of layers within a superlattice could
be inferred through precise measurements of the acoustic
mode spacing, in analogy with X-ray diffraction mea-
surements of crystalline solids.

V. TRANSPORT EFFECTS

In our previous work [28], we showed that optically-
generated picosecond acoustic (strain) pulses propagat-
ing along the growth direction of a QCL, alter the band-
structure potential sequentially and perturb the resonant
tunneling between adjacent QCL periods. Here, we will
examine the potential THz QCL transport effects that
could be induced by resonant (non-propagating) acous-
tic phonon modes.

The transport in THz QCLs requires the use of mod-
els that include coherent effects, such as Non-Equilibrium
Green Function (NEGF) [45-47], or density matrix (DM)
approaches [30, 31, 48-50] or the Wigner function for-
malism [51]. The NEGF approaches provide highly de-
tailed results at a high numerical cost, whereas the DM
approaches offer comparable outputs [48] with high nu-
merical efficiency. The DM models deviate from NEGF
simulations when high electric field bias is applied, mak-
ing them less suitable for modelling mid-infrared QCLs,
however they are ideal for device optimisation of THz
QCL structures [29].

As such, we employ a density-matrix model [30, 31] for
calculation of electron transport in arbitrary THz QCLs.
This model uses a tight-binding approximation for elec-
tronic structure calculation, which is then extended to
an infinite period consideration of the QCL within the
first-neighbor approximation. In the transport model, we
treat various non-radiative interactions of electrons with
alloy disorder (AD), longitudinal optical (LO) phonons,
acoustic (AC) phonons, ionised impurities (IT), interface
roughness (IFR) and other electrons (EE).

To model the resonant acoustic effect, we add a static
deformation potential Vg, (%) to the Hamiltonian for an
electron in the QCL, which we assume to be directly
proportional to the envelope of the local acoustic strain,
pn(z). The BZE and BZC solutions of Eq. (2) provide
standing-wave-like resonant modes with envelopes p,(z),
giving:

Vs, (2) = M - p,(2) (14)

where M is a modulation strength constant. For the
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FIG. 9. Conduction band potential of a hybrid QCL de-
sign [28] with the addition of the 30" acoustic mode with
modulation M = 5meV. Two periods are shown at the res-
onance bias K = 3.63kV cm ™! along with the corresponding
wavefunction moduli squared.

acoustic signal generated in [28], we estimated that the
strain amplitude perturbed the conduction band poten-
tial by ~2meV. With this assumption in Eq. (14), we
can explore which acoustic modes affect electron trans-
port, how the effects scale with modulation strength M,
and which type of QCL designs are affected most signif-
icantly. We will dedicate special focus either to modes
with frequencies ~100 GHz as these have been reported
experimentally in the modulation of superlattice band-
structures [11, 13, 15], or to 500-700 GHz modes, as
a coherent phononic source has been reported in this
range [52].

It is important to note that the strain standing wave,
and hence deformation potential, oscillates in the time-
domain around the zero point. The acoustic frequencies
considered in this work are on the scale of a few hun-
dred GHz, and the deformation, therefore, oscillates on
a similar timescale to the electron dynamics within in-
tersubband devices. As such, the deformation cannot be
“averaged out” as a fast background effect, and a com-
putationally demanding time-dependent model would be
required for an accurate analysis of the acoustic effect on
electron transport. In this work, however, we use a sim-
plified time-independent approximation. Here, we con-
sider the strain wave at its zero-phase point in the time
domain, i.e., with the local deformation “frozen” at its
maximum value. This allows us to gain insight rapidly
into the effect of the spatial component of the acoustic
deformation upon carrier dynamics.

In Fig. 9, we present the conduction band potential
of Device A, as described in Section III, and Ref. [28],
where the 30" acoustic mode is added as strain to the
original potential with modulation strength M = 5meV
to illustrate the effect of Eq. (14) on the bandstructure
potential. The potential itself is the main input for our
Schrédinger—Poisson solver, from which we obtain the
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FIG. 10. Material gain and current density dependence on
electric field when the first acoustic mode n = 1 is added
with a range of modulation strengths to the conduction band
potential of Device A.

quasi-bound state energies and the corresponding wave-
functions. This algorithm is coupled with a density ma-
trix transport model and we can obtain the dependence
of the QCL emission frequency, f, current density J and
material gain g as a function of the applied electric field
K. The K and J values directly correspond to the volt-
age and current in experimental device characterization,
while the material gain offers insight into whether the
structure lases or not, as well as providing information on
the dynamic range. If a double-metal plasmonic waveg-
uide is assumed, typical losses are ~ 20 cm~!. Our
simulations are reliable up to the peak of current den-
sity J(K). Beyond this, the device enters a negative-
differential-resistance (NDR) regime, and becomes elec-
trically bistable.

Our approach to understanding the effect of acoustic
resonances on QCL performance is to analyse key QCL
performance parameters derived from g(K), J(K) and
f(K), when (a) the modulation strength of a given mode
is varied, and when (b) the mode index is varied, with a
constant modulation strength.

In Fig. 10, we show the contribution of the first acous-
tic phonon mode with resonant frequency 17.4 GHz and
modulation strengths M up to 5meV in Device A. The
traces corresponding to M = 0 represent the unper-
turbed simulation outputs of our model. We observe
a monotonically rising current density profile, material
gain that surpasses the losses and in the inset, we note
that this structure operates around 2.5-2.75 THz, which
agrees very well with the experimental results [28]. There
is a significant change in performance as the modulation
strength M increases, where the most important effect is
a shift of the current density peak, causing a reduction
to the dynamic range.

To quantify the acoustic strain effect, we have ex-
tracted key performance parameters for the QCL—the
dynamic range, peak gain, peak (NDR) current density
and the frequency of emission at the start of the NDR
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FIG. 11. Dependence of performance parameters for De-
vice A, as a function of modulation strength using acoustic
modes p,(z) with indices n = 1,2,30. Results are shown for
(a) peak gain, (b) current density at the NDR point, (c) emis-
sion frequency (at NDR point) and (d) dynamic range.

region—as a function of modulation strength, with re-
sults presented in Fig. 11 for the n = 1,2 and 30 modes.

The material gain and the current density values in
Fig. 11(a) and 11(b) are taken as the peak values of the
corresponding traces in Fig. 10, whereas the frequency in
Fig. 11(c) is taken at NDR point (peak of the current den-
sity in Fig. 10). The dynamic range in Fig. 11(d) is calcu-
lated as the current density difference between the NDR
value and the value that corresponds to material gain
threshold of ~ 20 cm™!, we note when the threshold bias
is larger than the bias corresponding to the NDR value,
the dynamic range is set to zero value, physically indi-
cating a non-lasing structure. In Fig. 11(d), the second
mode causes highly disruptive perturbation to the con-
duction band potential leading to a non-lasing structure.
This occurs because the second mode has a sinusoidal
shape across one period and when added to conduction
band potential, similarly as in Fig. 9, it causes abrupt
changes in the shape of the conduction band potential,
drastically affecting QCL performance.

As expected, the perturbation to each of these values
increases with respect to M. However, the effect of the
higher order M = 30 mode (~522 GHz) is shown to be
considerably weaker than that of the lower modes.

This is confirmed further in Fig. 12, which shows that
the variation in the QCL performance parameters oscil-
lates and then decays as a function of acoustic mode in-
dex in all cases. The first 20 modes all affect transport,
are capable of perturbing the conduction band potential
strongly, and even prevent the structure from lasing ow-
ing to a strong shift of the NDR point and reduction of
dynamic range. This is in agreement with previous re-
ports of heterostructures being modulated by ~100 GHz
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FIG. 12. Dependence of performance parameters for Device A
(Hybrid QCL design), as a function of acoustic mode py(z)
index, using varying modulation strengths M = 1,2,3 meV.
Results are shown for (a) peak gain, (b) current density at
the NDR point, (c¢) emission frequency at NDR point and
(d) dynamic range. Values corresponding to n = 0 represent
non-perturbed values (ie M = 0).

acoustic pulses [11, 13, 15]. The lowest mode perturbs
potential at its endpoints the most. In our simulations
of transport we always define the QCL period as start-
ing (and ending) from the midpoint of the injection bar-
rier. Adding a modulated standing wave M -pg(z) causes
perturbation of the injection barrier so strongly affect-
ing the tunnelling. We note that this effect is signifi-
cant in Fig. 11 even for low modulation strengths. How-
ever, higher-order modes have negligible effect. This is
explained by the periodicity of the high-order acoustic
modes becoming much shorter than that of the QCL po-
tential profile. As such, these act as a very high-frequency
oscillation superimposed upon the QCL potential, which
by analogy with the envelope-function model, will have
only a weak effect on the eigenstates of the electrons.

In Fig. 13 and Fig. 14, we show comparable analy-
ses of an LO-phonon depopulated QCL (Device B) [10]
and a BTC QCL (Device C) [30] respectively. In both
cases, we observe a similar general behaviour to that in
Fig. 11, however Device B displays very high sensitivity
to the second acoustic mode This is understandable, as
the LO-phonon-depopulated QCL design is more sensi-
tive to perturbations in the injection barrier, because the
coupling between adjacent periods is more selective than
in BTC and Hybrid structures. Interestingly, the second
mode causes very sudden deterioration of the material
gain in Fig. 14, and this is likely due to the nature of the
bandstructure potential for this particular structure.

We note that both Hybrid and LO-phonon-
depopulated QCLs wuse similar resonant tunnelling
injection between adjacent periods, while BTC struc-
tures employ closely spaced minibands of states to
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FIG. 13. Dependence of performance parameters for Device B
(LO phonon design), as a function of acoustic mode py(z)
index, using varying modulation strengths M = 1,2,3 meV.
Results are shown for (a) peak gain, (b) current density at
the NDR point, (c¢) emission frequency (at NDR point) and
(d) dynamic range.
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FIG. 14. Dependence of performance parameters for Device C
(BTC design), as a function of acoustic mode py(z) index,
using varying modulation strengths M = 1,2,3 meV. Results
are shown for (a) peak gain, (b) current density at the NDR
point, (c¢) emission frequency (at NDR point) and (d) dynamic
range.

depopulate the lower lasing level. For this reason,
Device C is more sensitive to lower mode perturbation.
As with Device A, the acoustic perturbation effect os-
cillates and then decays at higher mode indices. In each
case, the periodicity of the acoustic deformation poten-
tial becomes short compared with that of the QCL layer
structure. LO phonon QCLs employ fewer quantum wells
per period than BT'C or Hybrid designs, and are therefore



much shorter. As such, in Fig. 14 and Fig. 12, the added
strain perturbs transport up to 20-24*" mode, while in
Fig. 13, the transport features saturate around the 10"
mode. Interestingly however, the frequency of the satura-
tion point is comparable for all three designs (~400 GHz),
as the LO phonon design has a wider separation between
modes.

Modulation of the QCL emission frequency (on the
scale of a few hundred GHz) is shown also to be possible
for each of the three devices. This reaffirms our con-
clusion that acoustic modulation of QCL performance is
caused by perturbing the conduction band potential in
the injection barrier. Thus, tunnelling current and injec-
tion will be affected most strongly, though optical tran-
sitions, which typically happen in the first two wells of
QCL period, are also likely to suffer some detuning due
to applied strain. In all cases, we observe an oscillation in
emission frequency (and current and gain) as the acoustic
mode index increases. This occurs as lower modes have
a spatial distribution that locally perturbs the potential
profile in wells where the optical transition take place.

VI. CONCLUSION

We have presented analysis of acoustic resonances in
arbitrary superlattice heterostructures, focusing on THz
QCL devices. The model presented in Section IT provides
a flexible method to determine the resonant frequencies
with high precision in arbitrary superlattice profiles. In
Section IV, we discussed the precision of quasi-analytical
approaches and calculated the deviation from bulk and
average approximations given in Eq. (11). We showed
that a coarse approximation to the acoustic mode fre-
quencies may be determined analytically from the period
length and average acoustic velocity in the superlattice.
However, approximately 2 GHz detuning of the acoustic
mode spacing arises from the precise layer composition
in the structure, and this may only be computed using
numerical methods.

We show that this detuning effect is greatest in super-
lattices with high variation of acoustic velocity between
layers. This is in some cases periodic, and its period
is determined by resonances of the acoustic wave within
barrier layers in the structure. As such, this effect can
be manipulated through superlattice layer design and of-
fers another degree of freedom for fine-tuning frequency
control of phononic devices.

In Section V we examined the effect of acoustic modes
on electron transport in THz QCLs, using a deformation-
potential approach. We found that the gain, threshold
current and emission frequency are all perturbed signif-
icantly for acoustic modes up to ~200 GHz, in line with
previous experimental investigations. These affect band-
structure potential in its most sensitive location — the in-
jection barrier, thus directly affecting resonant tunnelling
that couples carriers between adjacent periods, while
slightly higher modes may also perturb bandstructure
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potential in wells in which key optical transitions take
place. For high-frequency modes, however, the acoustic
deformation potential oscillates on a length-scale much
smaller than the QCL layer structure, and hence has neg-
ligible effect on transport. We also observed that overall,
designs with longer period length display slightly higher
sensitivity to acoustic perturbations.

This investigation demonstrates the potential for the
design of THz QCLs for high speed modulation, or
higher temperature operation, through the engineering
of phonon interactions.
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TABLE I. Layer composition of considered structures in section IV. Layer widths in bold text represent the barriers, each
structure ends with the injection barrier layer.

Structure. Layer thicknesses [A] Al composition in Al,Ga;_xAs layers
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Device D 76.4/17.5/154.7/33.7 z=0.3

Device E 82/46/72/41/160/43 z=0.15, 2 = 0.075

Device F 2(z) = 4z (z - %)2 dea = 3000 A, dz = 2.825 A , o = 0.14
Device G z(z) = ‘j;? (Z _ %)2 1+0.18- 4;2? (Z _ %)1 da =620 A, dz =2.825 A | o = 0.42
Device H 42/17/20/17 z=1

Device Dy 76.4/35/154.7/33.7 x=0.3

Device C1|  144/10/118/10/144/24/144/24/132/30/124/32/120/44/126 /50 z=01,z=1
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Device A;| 106/5/170/10,/135/21,/124/31,/100/31,/90/31,/75/31/178/31/152/41 z=014,2=03

Device I 150/20,/150/40/150/80 z=1

Device J 100/20,/100/20,/200/20,/200/20 z=0.1
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APPENDIX: LAYER COMPOSITION OF
DEVICES

The layer composition of structures used in Section IV
are shown in Table I, along with functions used to gen-

erate parabolic profiles of Devices F and G.
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