4,336 research outputs found

    Comparative genomic analysis of a multiple antimicrobial resistant enterotoxigenic E. coli O157 lineage from Australian pigs

    Get PDF
    © 2015 Wyrsch et al. Background: Enterotoxigenic Escherichia coli (ETEC) are a major economic threat to pig production globally, with serogroups O8, O9, O45, O101, O138, O139, O141, O149 and O157 implicated as the leading diarrhoeal pathogens affecting pigs below four weeks of age. A multiple antimicrobial resistant ETEC O157 (O157 SvETEC) representative of O157 isolates from a pig farm in New South Wales, Australia that experienced repeated bouts of pre- and post-weaning diarrhoea resulting in multiple fatalities was characterized here. Enterohaemorrhagic E. coli (EHEC) O157:H7 cause both sporadic and widespread outbreaks of foodborne disease, predominantly have a ruminant origin and belong to the ST11 clonal complex. Here, for the first time, we conducted comparative genomic analyses of two epidemiologically-unrelated porcine, disease-causing ETEC O157; E. coli O157 SvETEC and E. coli O157:K88 734/3, and examined their phylogenetic relationship with EHEC O157:H7. Results: O157 SvETEC and O157:K88 734/3 belong to a novel sequence type (ST4245) that comprises part of the ST23 complex and are genetically distinct from EHEC O157. Comparative phylogenetic analysis using PhyloSift shows that E. coli O157 SvETEC and E. coli O157:K88 734/3 group into a single clade and are most similar to the extraintestinal avian pathogenic Escherichia coli (APEC) isolate O78 that clusters within the ST23 complex. Genome content was highly similar between E. coli O157 SvETEC, O157:K88 734/3 and APEC O78, with variability predominantly limited to laterally acquired elements, including prophages, plasmids and antimicrobial resistance gene loci. Putative ETEC virulence factors, including the toxins STb and LT and the K88 (F4) adhesin, were conserved between O157 SvETEC and O157:K88 734/3. The O157 SvETEC isolate also encoded the heat stable enterotoxin STa and a second allele of STb, whilst a prophage within O157:K88 734/3 encoded the serum survival gene bor. Both isolates harbor a large repertoire of antibiotic resistance genes but their association with mobile elements remains undetermined. Conclusions: We present an analysis of the first draft genome sequences of two epidemiologically-unrelated, pathogenic ETEC O157. E. coli O157 SvETEC and E. coli O157:K88 734/3 belong to the ST23 complex and are phylogenetically distinct to EHEC O157 lineages that reside within the ST11 complex

    The role of positive emotion and contributions of positive psychology in depression treatment: systematic review

    Get PDF
    The present study aims to conduct a systematic review of the literature by checking the impact of positive emotion in the treatment of depression and on the use of strategies of positive psychology which involves positive emotion to treat and reduce symptoms of depression. For this purpose, we conducted searches in databases ISI Web of Knowledge, PsycINFO and PubMed and found a total of 3400 studies. After inclusion application and exclusion criteria, 28 articles remained, presented and discussed in this study. The studies have important relations between humor and positive emotion as well as a significant improvement in signs and symptoms of depression using differents strategies of positive psychology. Another relevant aspect is the preventative character of the proposed interventions by positive psychology by the fact that increase well-being and produce elements such as resilience and coping resources that reduce the recurrent relapses in the treatment of depression. The strategies of positive psychology, such as increasing positive emotions, develop personal strengths: seeking direction, meaning and engagement for the day-to-day life of the patients, appear as potentially tools for the prophylaxis and treatment of depression, helping to reduce signs and symptoms as well as for prevention of relapses

    Orbitofrontal and caudate volumes in cannabis users: a multi-site mega-analysis comparing dependent versus non-dependent users.

    Get PDF
    Cannabis (CB) use and dependence are associated with regionally specific alterations to brain circuitry and substantial psychosocial impairment.The objective of this study was to investigate the association between CB use and dependence, and the volumes of brain regions critically involved in goal-directed learning and behaviour-the orbitofrontal cortex (OFC) and caudate.In the largest multi-site structural imaging study of CB users vs healthy controls (HC), 140 CB users and 121 HC were recruited from four research sites. Group differences in OFC and caudate volumes were investigated between HC and CB users and between 70 dependent (CB-dep) and 50 non-dependent (CB-nondep) users. The relationship between quantity of CB use and age of onset of use and caudate and OFC volumes was explored.CB users (consisting of CB-dep and CB-nondep) did not significantly differ from HC in OFC or caudate volume. CB-dep compared to CB-nondep users exhibited significantly smaller volume in the medial and the lateral OFC. Lateral OFC volume was particularly smaller in CB-dep females, and reduced volume in the CB-dep group was associated with higher monthly cannabis dosage.Smaller medial OFC volume may be driven by CB dependence-related mechanisms, while smaller lateral OFC volume may be due to ongoing exposure to cannabinoid compounds. The results highlight a distinction between cannabis use and dependence and warrant examination of gender-specific effects in studies of CB dependence

    Primates do not spontaneously use shape properties for object individuation: a competence or a performance problem?

    Get PDF
    Several recent studies have documented that non-human primates can individuate objects according to property and/or kind information in much the same way as human infants do from around one year of age when they begin to acquire language. Some studies suggest, however, that only some properties are used for the individuation of food items: color, but not shape. The present study investigated whether these findings reveal a true competence problem with shape properties in the food domain or whether they merely reveal a performance problem (e.g., lack of attention to shapes). We tested 25 great apes (chimpanzees, bonobos and gorillas) in two food individuation tasks. We manipulated subjects’ experience with differences in color and shape properties of food items. Results indicated (i) that all subjects, regardless of their prior experience, solved the color-based object individuation task and (ii) that only the group with previous experience with different shape properties succeeded in the shape-based individuation task. Great apes can thus be primed to take shape into account for individuating food objects, and this results clearly speaks in favor of a performance (rather than a competence) problem in using shape for object individuation of food items

    Mannosylated glycans impair normal T-cell development by reprogramming commitment and repertoire diversity

    Get PDF
    T-cell development ensures the formation of diverse repertoires of T-cell receptors (TCRs) that recognize a variety of antigens. Glycosylation is a major posttranslational modification present in virtually all cells, including T-lymphocytes, that regulates activity/functions. Although these structures are known to be involved in TCR-selection in DP thymocytes, it is unclear how glycans regulate other thymic development processes and how they influence susceptibility to disease. Here, we discovered stage-specific glycome compositions during T-cell development in human and murine thymocytes, as well as dynamic alterations. After restricting the N-glycosylation profile of thymocytes to high-mannose structures, using specific glycoengineered mice (Rag1CreMgat1fl/fl), we showed remarkable defects in key developmental checkpoints, including ß-selection, regulatory T-cell generation and γδT-cell development, associated with increased susceptibility to colon and kidney inflammation and infection. We further demonstrated that a single N-glycan antenna (modeled in Rag1CreMgat2fl/fl mice) is the sine-qua-non condition to ensure normal development. In conclusion, we revealed that mannosylated thymocytes lead to a dysregulation in T-cell development that is associated with inflammation susceptibility.Funded by the “2022 Lupus Research Alliance (LRA) Lupus Innovation Award”. Institutional funding from the Portuguese Foundation for Science and Technology (FCT): projects NORTE-01-0145-FEDER-000029, POCI-01/0145-FEDER-016601, POCI-01-0145-FEDER-028772, and PTDC/MEC-REU/28772/2017 (SSP). This study was co-funded by the European Union (ERC Synergy, GlycanSwitch, 101071386). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. The study was also co-funded by the European Union, GlycanTrigger project, Grant Agreement No: 101093997. Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. A grant was received from the Portuguese group of study in autoimmune diseases (NEDAI) to SSP. MMV (PD/BD/135452/2017; COVID/BD/152488/2022) received funding from the FCT

    Extension of Yeast Chronological Lifespan by Methylamine

    Get PDF
    Background: Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth. Methodology/Principal Findings: The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase. Conclusion/Significance: We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.

    Hemodynamic latency is associated with reduced intelligence across the lifespan: an fMRI DCM study of aging, cerebrovascular integrity, and cognitive ability

    Get PDF
    Changes in neurovascular coupling are associated with both Alzheimer’s disease and vascular dementia in later life, but this may be confounded by cerebrovascular risk. We hypothesized that hemodynamic latency would be associated with reduced cognitive functioning across the lifespan, holding constant demographic and cerebrovascular risk. In 387 adults aged 18–85 (mean = 48.82), dynamic causal modeling was used to estimate the hemodynamic response function in the left and right V1 and V3-ventral regions of the visual cortex in response to a simple checkerboard block design stimulus with minimal cognitive demands. The hemodynamic latency (transit time) in the visual cortex was used to predict general cognitive ability (Full-Scale IQ), controlling for demographic variables (age, race, education, socioeconomic status) and cerebrovascular risk factors (hypertension, alcohol use, smoking, high cholesterol, BMI, type 2 diabetes, cardiac disorders). Increased hemodynamic latency in the visual cortex predicted reduced cognitive function (p < 0.05), holding constant demographic and cerebrovascular risk. Increased alcohol use was associated with reduced overall cognitive function (Full Scale IQ 2.8 pts, p < 0.05), while cardiac disorders (Full Scale IQ 3.3 IQ pts; p < 0.05), high cholesterol (Full Scale IQ 3.9 pts; p < 0.05), and years of education (2 IQ pts/year; p < 0.001) were associated with higher general cognitive ability. Increased hemodynamic latency was associated with reduced executive functioning (p < 0.05) as well as reductions in verbal concept formation (p < 0.05) and the ability to synthesize and analyze abstract visual information (p < 0.01). Hemodynamic latency is associated with reduced cognitive ability across the lifespan, independently of other demographic and cerebrovascular risk factors. Vascular health may predict cognitive ability long before the onset of dementias

    The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang

    Get PDF
    Evolution in the measured rest frame ultraviolet spectral slope and ultraviolet to optical flux ratios indicate a rapid evolution in the dust obscuration of galaxies during the first 3 billion years of cosmic time (z>4). This evolution implies a change in the average interstellar medium properties, but the measurements are systematically uncertain due to untested assumptions, and the inability to measure heavily obscured regions of the galaxies. Previous attempts to directly measure the interstellar medium in normal galaxies at these redshifts have failed for a number of reasons with one notable exception. Here we report measurements of the [CII] gas and dust emission in 9 typical (~1-4L*) star-forming galaxies ~1 billon years after the big bang (z~5-6). We find these galaxies have >12x less thermal emission compared with similar systems ~2 billion years later, and enhanced [CII] emission relative to the far-infrared continuum, confirming a strong evolution in the interstellar medium properties in the early universe. The gas is distributed over scales of 1-8 kpc, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z<3 and being comparable to local low-metallicity systems.Comment: Submitted to Nature, under review after referee report. 22 pages, 4 figures, 4 Extended Data Figures, 5 Extended Data table

    Effects of external nutrient sources and extreme weather events on the nutrient budget of a Southern European coastal lagoon

    Get PDF
    The seasonal and annual nitrogen (N), phosphorus (P), and carbon (C) budgets of the mesotidal Ria Formosa lagoon, southern Portugal, were estimated to reveal the main inputs and outputs, the seasonal patterns, and how they may influence the ecological functioning of the system. The effects of extreme weather events such as long-lasting strong winds causing upwelling and strong rainfall were assessed. External nutrient inputs were quantified; ocean exchange was assessed in 24-h sampling campaigns, and final calculations were made using a hydrodynamic model of the lagoon. Rain and stream inputs were the main freshwater sources to the lagoon. However, wastewater treatment plant and groundwater discharges dominated nutrient input, together accounting for 98, 96, and 88 % of total C, N, and P input, respectively. Organic matter and nutrients were continuously exported to the ocean. This pattern was reversed following extreme events, such as strong winds in early summer that caused upwelling and after a period of heavy rainfall in late autumn. A principal component analysis (PCA) revealed that ammonium and organic N and C exchange were positively associated with temperature as opposed to pH and nitrate. These variables reflected mostly the benthic lagoon metabolism, whereas particulate P exchange was correlated to Chl a, indicating that this was more related to phytoplankton dynamics. The increase of stochastic events, as expected in climate change scenarios, may have strong effects on the ecological functioning of coastal lagoons, altering the C and nutrient budgets.Portuguese Science and Technology Foundation (FCT) [POCI/MAR/58427/2004, PPCDT/MAR/58427/2004]; Portuguese Science and Technology Foundation (FCT

    Variation in flexural, morphological, and biochemical leaf properties of eelgrass (Zostera marina) along the European Atlantic climate regions

    Get PDF
    Seagrasses need to withstand hydrodynamic forces; therefore, mechanical properties such as flexibility or breaking resistance are beneficial for survival. The co-variation of leaf breaking properties with biochemical traits in seagrasses has been documented, but it is unknown if the same patterns apply to leaf flexural properties. To interpret changes in the ecological function of seagrass ecosystems based on acclimation responses to environmental changes, it is necessary to understand the factors that affect flexural leaf properties. Here, morphological and flexural leaf properties of the perennial type of Zostera marina across different environmental conditions along European Atlantic climate regions are presented together with C:N ratio and neutral detergent fibre content as descriptors of biochemical leaf composition. Eelgrass leaves from cold regions were similar to threefold more elastic and similar to tenfold more flexible, were also narrower (1.7-fold), and contained similar to 1.9-fold higher fibre content than from plants growing in warmer regions. Eelgrass also showed acclimation to local conditions such as seasonality, water depth, and hydrodynamic exposure. Leaves collected from exposed or shallower locations or during winter were more flexible, suggesting an avoidance strategy to hydrodynamic forcing, which is generally higher under those conditions. Flexural rigidity was almost equally controlled by bending modulus (35%) and leaf thickness (37%), indicating functional differences compared to leaf breaking described in the literature. Overall, the findings indicate that Zostera marina has a high flexural plasticity and high acclimation capacity to some climate change effects such as sea level rise and increase in storm frequency and intensity.German Science FoundationGerman Research Foundation (DFG) [PA 2547/1-1]Royal Swedish Academy of Sciences (KVA travel grant)FCT-Foundation for Science and TechnologyPortuguese Foundation for Science and Technology [UID/Multi/04326/2019, SFRH/BPD/119344/2016
    corecore