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Abstract

Background: Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The
yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging
research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require
primary peroxisome metabolism for growth.

Methodology/Principal Findings: The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown
on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require
peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS
do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted
in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by
peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation
product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and
reduction of ROS levels in the stationary phase.

Conclusion/Significance: We conclude that primary peroxisome metabolism enhanced chronological lifespan of H.
polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source
supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should
include possible effects on the energy status of the cell.

Citation: Kumar S, Lefevre SD, Veenhuis M, van der Klei IJ (2012) Extension of Yeast Chronological Lifespan by Methylamine. PLoS ONE 7(11): e48982. doi:10.1371/
journal.pone.0048982

Editor: Valdur Saks, Université Joseph Fourier, France
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Introduction

Aging is a degenerative process characterized by a progressive

deterioration of cellular components resulting in enhanced

mortality. Short lived model organisms, such as yeast, have

strongly contributed to our current understanding of the molecular

determinants of aging [1]. In yeast, two types of lifespan can be

discriminated, referred to as replicative lifespan (RLS) and

chronological lifespan (CLS). RLS is defined by the number of

daughter cells a mother cell can produce before cell division ceases

[2], whereas CLS is the time cells survive in the stationary phase

[3]. These two types of lifespan can serve as models for

proliferating (mitotic) and non-proliferating (post-mitotic) tissues

in higher eukaryotes, respectively [4]. Research on CLS of

glucose-grown Saccharomyces cerevisiae cells have strongly contributed

to the identification of factors that contribute to aging. Using

deletion or overexpression strains, several proteins have been

identified that either negatively or positively influence CLS. For

instance, deletion of certain genes involved in nutrient adaptation

response, like TOR1, lengthens the lifespan of S. cerevisiae [5,6],

whereas the deletion of genes required for autophagy results in a

reduced lifespan. In addition to genetic factors, also growth

conditions have been shown to have major impact on the CLS of

S. cerevisiae [7,8]. Important parameters include the composition of

the growth medium as well as the pH [9]. Finally, the addition of

various compounds such as spermidine, resveratrol and rapamycin

were demonstrated to have a positive effect on the CLS of S.

cerevisiae [10,11]. Both spermidine and rapamycin stimulate

autophagy, underlining the importance of this process for

longevity.

For several factors that affect aging in S. cerevisiae the molecular

mechanisms have been elucidated in detail and shown to be

conserved in higher eukaryotes. However, for many others the

mechanisms are unclear or even highly debated.

Although S. cerevisiae is a highly attractive model organism for

aging research, because of the unprecedented availability of tools

and knowledge, this organism and the generally used growth

substrate glucose, have also distinct disadvantages. First, S. cerevisiae

is a Crabtree positive yeast, implying that mitochondrial respira-

tion is turned down at high glucose conditions. As a result the
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organism shows diauxic growth on glucose: first glucose is

consumed and converted into ethanol, followed by growth on

ethanol. However, the metabolic intermediate ethanol (but also

acetate that is formed as well) is an important determinant in CLS.

Hence, a substrate that does not result in ethanol and acetate

formation can have advantages in certain aging studies. Second, S.

cerevisiae has lost several properties/genes during evolution that are

still conserved from their common ancestor in other yeast species

and animals. Finally, different from most yeast species, extensive

gene duplication has occurred in S. cerevisiae, which requires the

construction of double mutants in order to detect specific

phenotypes. Indeed, the analysis of CLS in alternative yeast

species, such as Candida albicans, Kluyveromyces lactis and Schizosac-

charomyces pombe, has already been shown to contribute to the

identification of universal molecular factors acting on aging [12].

In the present work, we have used the methylotrophic yeast

species Hansenula polymorpha to study chronological aging. In

contrast to S. cerevisiae, this yeast is Crabtree negative. This yeast

also is capable to metabolize a range of carbon (e.g. methanol and

ethanol) and organic nitrogen sources (primary amines, D-amino

acids) that all require peroxisome function for growth which have

not been analyzed in CLS studies before. Our data indicate that

utilization of these compounds (ethanol, methanol, D-alanine,

methylamine) results in enhanced CLS relative to glucose/

ammonium sulphate.

Materials and Methods

Strain and growth conditions
H. polymorpha NCYC495 leu1.1, an amine oxidase deletion strain

derived from this wild-type strain and atg1 [13] were used

throughout this study. Yeast cells were grown at 37uC on mineral

medium (MM) [14] supplemented with different carbon sources

(0.5% glucose, 0.5% methanol and 0.35% ethanol) and nitrogen

sources (0.0025%, 0.25% MA and 0.33% D-alanine), unless stated

otherwise. Leucine was added to a final concentration of 30 mg/

ml. For viability determination cells were plated on YPD agar

plates containing 1% yeast extract, 1% peptone, 1% glucose and

2% agar. For cloning purposes, E. coli DH5a was used; cells were

grown at 37uC on LB media supplemented with 100 mg/ml

ampicillin or 50 mg/ml kanamycin when required.

Chronological lifespan measurements
Yeast cells from fresh YPD plates were inoculated into MM

supplemented with 0.5% glucose and 0.25% ammonium sulfate

and grown overnight. Overnight cultures were diluted to an

OD600 nm of 0.1 in the same medium and grown till OD600 nm of

1.0 and again diluted 1/10 to the same medium. When the

cultures reached an OD600 nm of 1.5, cells were transferred to MM

supplemented with different carbon and nitrogen sources at a start

OD of 0.1. CLS measurements were started when the culture

reached the stationary phase (16 h on glucose and 40 h on

methanol and ethanol containing media) and was referred as day

1. Cells were kept in the spent medium except for the experiments

shown in Fig. 1B, where stationary phase cells were collected by

centrifugation and resuspended in 25 mM phosphate buffer pH

6.0. For viability assays, the number of cells per ml was determined

using CASYH Model TT (Roche Applied Science). 500 cells were

plated on YPD agar plates and incubated at 37uC until colonies

appeared. The lifespan curves shown represent the average of 4–6

experiments.

ROS measurements
ROS accumulation, mainly peroxides and peroxinitrites, was

measured with dihydrorhodamine 123 (DHR, Invitrogen). 107

cells were stained with 20 mg/ml DHR for 30 minutes. Mean of

fluorescence was measured using a FACS Aria II Cell sorter (BD

Biosciences) equipped with a 488 nm laser and 530/30 nm band-

pass filter. FACSDiva software version 6.1.2 was used for data

acquisition and analysis.

Construction of Hansenula polymorpha Damo mutant
The Damo strain was constructed by replacing the genomic

region of AMO comprising nucleotides +103 to +1925 by the

hygromycin B resistance gene, HphMX4 in the wild-type cells. Two

DNA fragments from 2515 to +102 and +1926 to +2412 of the

AMO genomic region were amplified by PCR using primers

59Amo-FP (59-GGGGACAACTTTGTATAGAAAAGTTGCT-

CAGCTTGGTGAGCACCTTCT-39)/59Amo-RP (59-GGGGA-

CTGCTTTTTTGTACAAACTTGCTTGATCTCGGCGGT-

GGACAG-39) and 39Amo-FP (59-GGGGACAGCTTTCTTG-

TACAAAGTGGCTCTTAGACCTCGGCACTTCTT-39)/39Amo-

RP (59-GGGGACAACTTTGTATAATAAAGTTGCCAACA-

GACGACCTGATGAAC-39) respectively, and H. polymorpha

genomic DNA as a template. The PCR fragments were cloned

into the vectors pDONR-P4-1R and pDONR-P2R-P3[15] ,

respectively, resulting in the entry vectors pENTR-AMO 59 and

pENTR-AMO 39. Recombination of entry vectors pENTR-AMO

59, pENTR-AMO 39and pENTR-221-HPH [15] , and the

destination vector pDEST-R4-R3 resulted in pSAN01. Subse-

quently, H. polymorpha WT leu1.1 cells were transformed with the

2915 bp amo::HphMX4 deletion fragment, which was obtained by

PCR using primers Amo.cas.FP (59-CAGCTTGGTGAG-

CACCTTCT-39)/Amo.cas.RP (59-CAACAGACGACCTGAT-

GAAC-39) and pSAN01 as a template. The resulting strain was

designated as Damo. Correct integration was confirmed by PCR

using primers EMK15 (59- GAACTTCATTGACGCAGA-

CGTC-39)/Pex25-8PtefSc-Rv (59GGGTGTTTTGAAGTGG-

TACG-39) and AMO_del_RP (59-CGAGTGGCGATGCAAAC-

GAC-39)/Pex25-10 TtefAg-Fw (59-TCATCTGCCCAGATGC-

GAAG -39).

Biochemical methods
Yeast cells from aging cultures were harvested by centrifugation.

Cell pellets were washed once with cold water and quickly frozen

in liquid nitrogen; samples were stored at 280uC until further use.

Cell extracts for enzyme activity measurements were prepared as

described earlier [16]. AMO activity was measured as described

previously [17]. Protein samples for SDS-PAGE gels were

prepared and separated on 10% SDS-PAGE gel (BioRad).

Proteins were transferred to nitrocellulose membranes using the

semi-dry blotting method and probed with specific polyclonal anti-

AMO antisera.

Measurement of free amines in the culture medium
Supernatant from yeast cultures were collected upon spinning

down the cells. Various dilutions were prepared in borate buffer

(pH 9.0). One volume of fluorescamine solution (Sigma F9015.,

Saint Louis, Missouri, USA) was added to 1 ml of 100 to 1000

time diluted supernatant and mixed. Using a Fluoromax 3

spectrophotometer (Horiba, Kyoto, Japan) fluorescence intensity

was measured (excitation at 390 nm; emission was collected from

400 nm to 600 nm). Fluorescence intensity, represented in count

per second (cps) at 475 nm, was used for the calculations.

Yeast Lifespan Extension by Methylamine
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Results

Growth on ethanol or methanol extend the CLS relative
to glucose

To investigate the effect of different carbon sources which are

metabolized by peroxisome-borne enzymes on the CLS of H.

polymorpha, we cultivated wild-type cells on mineral media

containing ethanol or methanol as sole carbon source in the

presence of ammonium sulphate (AS) as sole nitrogen source,

using glucose/AS as control. The survival measurements started

when the cells reached the stationary phase (day 1) and the cells

were kept in their original medium. The data presented in Fig. 1A

show that the CLS (both medium and maximum lifespan; Table 1)

of the ethanol and methanol cultures was strongly extended

relative to that of the glucose culture.

In S. cerevisiae acidification of the medium is an important factor

in the CLS of glucose-grown cells. We therefore monitored

whether differences occurred in the pH of the cultures during the

CLS experiments. The pH of the glucose culture rapidly dropped

from 6.2 to 3.8 during the first day of the experiment, whereas in

the ethanol and methanol cultures the pH never dropped below

4.5.

To analyse whether medium acidification explained the reduced

lifespan of the glucose cultures, CLS experiments were repeated

using cells which were precultivated on the three different carbon

sources and, upon reaching the stationary phase, collected by

centrifugation and resuspended into phosphate buffer (pH 6). As

Figure 1. Chronological aging of H. polymorpha cells grown on different carbon sources. (A) CLS of wild-type cells following cultivation on
various carbon sources (0.5% glucose, 0.35% ethanol or 0.5% methanol) in the presence of ammonium sulfate (AS) as nitrogen source. (B) CLS
cultures grown like for panel A, but shifted to phosphate buffer pH 6 after reaching the stationary phase (16 h for glucose and 40 h for ethanol and
methanol). (C) Measurement of DHR fluorescence in wild-type cells grown on different carbon sources as indicated in Figure 1A. Bars indicate the
standard error of mean. The lifespan curves shown represent the average of 4–6 experiments.
doi:10.1371/journal.pone.0048982.g001

Yeast Lifespan Extension by Methylamine
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shown in Fig. 1B and Table 1, the mean and maximum lifespan of

the glucose-grown cells was strongly enhanced in phosphate buffer

relative to the cultures that remained in the original medium. For

the methanol and ethanol cultures the median and maximum

lifespan only slightly increased. Hence, medium acidification is an

important factor in the relatively short CLS of glucose-grown H.

polymorpha cells, but plays a minor role in survival of methanol or

ethanol cultures.

In addition to medium acidification, intracellular ROS levels

are important in determining yeast CLS. We therefore analysed

the levels of these reactive compounds in the three cultures using

the dye DHR and FACS. As shown in Fig. 1C, glucose-grown cells

accumulate similar, relatively low ROS levels like ethanol or

methanol grown cells during the first 3days after reaching the

stationary phase, when large differences in survival were already

apparent (compare Fig. 1A). At later time points (day 4 and 5) we

only measured ROS in methanol and ethanol cultures as most

cells of the glucose culture already had died after day 3. On days 4

and 5 ROS levels increased in both cultures. The highest levels

were observed in methanol-grown cells even though the survival of

these cells was similar to ethanol-grown cells (Fig. 1A). These

findings suggest that growth of cells on media that require

peroxisome function has a positive effect on their despite the

enhanced ROS levels.

Methylamine extends the lifespan
Different from S. cerevisiae, H. polymorpha is capable to utilize a

large range of organic nitrogen sources. To test the effect of an

organic nitrogen source on chronological aging, cells were grown

on methanol in the presence of AS or methylamine (MA). As

shown in Figure 2A, MA significantly extends the median and

maximum lifespan relative to AS. In both the methanol/AS and

methanol/MA cultures the pH had decreased only slightly (to 5.2)

at day 1. After this time point the pH of both cultures remained

constant suggesting that differences in acidification do not explain

the observed CLS extension by MA.

We also measured ROS levels in both cultures. The data

(Fig. 2B) revealed that during the first 3 days, when differences in

survival were evident, ROS levels were at a similar, low level in

both cultures. At days 4 and 5 the ROS levels remained low in the

MA cultures whereas they increased in the AS cultures.

These data indicate that during the first days of the CLS

experiment neither reduced acidification nor altered ROS levels

can explain the positive effect of the utilization of MA as nitrogen

source on the chronological lifespan. Hence, it is likely that

additional processes play an important factor in the lifespan

extension by MA.

The CLS extension by MA is not dependent on
autophagy

Autophagy has been shown to be important for yeast

chronological aging. The polyamine spermidine prolongs the

CLS in S. cerevisiae by inducing autophagy [11]. We therefore asked

whether the lifespan extension caused by MA is related to changes

in autophagy. If alterations in autophagy would explain the

lifespan extension by MA, this extension should not occur in cells

defective in autophagy. We therefore performed a CLS experi-

ment using H. polymorpha Datg1 cells, which are deficient in

autophagy. These experiments indicated that the CLS of H.

polymorpha Datg1 cells is strongly reduced relative to that of the

wild-type control (Fig. 3, compare also Fig. 1A). However, also in

Datg1 cultures a positive effect of MA on survival was evident

during the first three days. In addition a slight increase in median

and maximum lifespan was observed (Fig. 3). This result suggests

that the use of MA has a positive effect on cell survival in an

autophagy-independent way.

The extended CLS is dependent on the MA concentration
in the growth medium

Like spermidine, MA may directly trigger specific cellular

processes that contribute to cell survival. Alternatively, MA

metabolism may be responsible for the observed lifespan

extension. In the latter case it is likely that the positive effect of

MA is only observed at relatively high concentrations. To test this,

we analysed the effect of reducing the concentration of MA. No

change in the CLS curve was observed (relative to the methanol/

AS) when the MA concentration was 100 fold reduced (Fig. 4A).

This was not due to negative effects of the low MA concentration

on the initial growth phase as both the doubling time (Fig. 4B) and

the final yield of the culture (Fig. 4C) was unaltered at reduced MA

concentrations. This suggests that the metabolism of MA during

the stationary phase is important for lifespan extension. If so, the

presence of MA in the medium should be essential to extend the

CLS. To analyse this, we removed MA from the stationary phase

cultures. To this end cells were precultivated on methanol/AS or

methanol/MA until the stationary phase. Subsequently both

cultures were harvested by centrifugation and resuspended in

phosphate buffer (pH 6.0). As shown in Figure 5A, methanol/AS

and methanol/MA grown cells showed a very similar CLS curve

in buffer.

When MA metabolism is responsible for the CLS extension, this

effect should be abolished in a strain lacking amine oxidase (AMO)

activity. Indeed, MA did not result in a CLS extension in an AMO

deficient strain (Damo Fig. 5B).

Table 1. The effect of buffer on median and maximum lifespan of H. polymorpha.

Carbon source* Condition** Median lifespan (days) Maximum lifespan (days)

Glucose Medium 2,2 3,8

Glucose Buffer 4,2 5,9

Ethanol Medium 4,6 7,3

Ethanol Buffer 6,8 7.1

Methanol Medium 5,1 7,9

Methanol Buffer 6,2 10,0

*Cells were grown in the presence of ammonium sulphate as nitrogen source
**Upon reaching the stationary phase the cells were kept in the same medium or collected by centrifugation and resuspended in buffer.
The median lifespan is defined as time point when 50% of the cells survive, the maximum lifespan when 10% of the cells survive (Fig. 1A).
doi:10.1371/journal.pone.0048982.t001
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Finally, if MA consumption is important the levels of free

amines in the media should drop during chronological aging and

the cells should display AMO activity in the stationary phase.

Measurement of free amine levels (Fig. 5C) revealed a gradual

decreased, indicating that MA is consumed during the initial

growth but also during the stationary phase. As expected, no

significant decline was observed in cultures of the Damo control

strain.

Enzyme assays revealed that AMO activity was present during

the CLS experiment, but somewhat reduced after 7 days relative

to the values observed at day 1 and 3 (Fig. 6A). The reduction in

AMO activity at day 7 was paralleled by a reduction in AMO

protein as was observed by Western blot experiments (Fig. 6B, C).

Formaldehyde can cause an increase in CLS similar as MA
MA is oxidized by AMO into ammonium and formaldehyde

[17]. In H. polymorpha formaldehyde is further oxidized by

formaldehyde dehydrogenase and formate dehydrogenase into

CO2. This process results in the generation of 2 NADH molecules

(Fig. 7). To test whether the formaldehyde oxidation product of

MA was responsible for the extension of the CLS by MA, we

supplemented a methanol/AS grown stationary phase culture with

37.8 mM formaldehyde, using cultures with 37.8 mM MA

(corresponding to 0.25% w/v) as a control. The data revealed

that the chronological lifespan of cultures supplemented with

formaldehyde is extended to the same extent as MA cultures

(Fig. 8). These data suggest that oxidation of formaldehyde,

generated by MA oxidation during the stationary phase, is likely

responsible for extra NADH supply which leads to an enhanced

lifespan.

D-alanine results in lifespan extension
H. polymorpha can also use D-alanine as nitrogen source. If

energy generation during the stationary phase can extend the

lifespan of cells, D-alanine is expected to cause a similar effect as

MA. D-alanine is oxidized by D-amino acid oxidase into

ammonium and pyruvate [18]. As shown in Fig. 9, indeed D-

alanine prolongs the chronological lifespan of H. polymorpha.

Discussion

Yeast chronological aging has a multifactorial nature. Many

cellular processes and extrinsic factors negatively influence the

CLS. Examples include oxidative stress, reduced autophagy or

medium acidification. Processes which induce stress responsive

genes extend yeast lifespan [19] . Hence yeast CLS is determined

by the resultant of multiple positive and negative processes.

Because of this complexity several factors implicated in yeast aging

are still highly debated.

So far most research on yeast CLS is performed with S. cerevisiae

using glucose/ammonium sulphate containing media. In this

paper we analysed the chronological lifespan of the yeast H.

polymorpha in relation to growth on different carbon and nitrogen

sources.

Our data revealed that of the three carbon sources tested

(glucose relative to two compounds that require peroxisome

function for growth namely ethanol and methanol) H. polymorpha

shows the shortest chronological lifespan on glucose. Compared to

S. cerevisiae, H. polymorpha dies relatively fast with a short maximum

lifespan of less than 4 days when grown on 0.5% glucose. At these

conditions the maximum lifespan of S. cerevisiae is generally above

10 days [20].

Glucose metabolism involves glycolysis, which in S. cerevisiae

leads to acetic acid formation that is associated with induction of

the mitochondrial apoptosis pathway [21]. In S. cerevisiae acetic

acid production is strongly reduced upon growth on glycerol

instead of glucose [22] (. Similar mechanisms most likely operate

Figure 2. Chronological aging of H. polymorpha cells grown on different nitrogen sources. (A) CLS of wild-type cells following cultivation
on 0.5% methanol in the presence of 0.25% AS or 0.25% MA s sole nitrogen sources. The lifespan curves shown represent the average of 4–6
experiments. (B) DHR fluorescence in cells grown on methanol in the presence of AS or MA at different time points during chronological aging. The
bars indicate the standard error of mean of two independent experiments.
doi:10.1371/journal.pone.0048982.g002

Figure 3. Chronological aging of H. polymorpha Datg1 cells. CLS
of Datg1 cells grown on methanol in the presence of AS or MA. Bars
indicate the standard error of mean of four experiments.
doi:10.1371/journal.pone.0048982.g003

Yeast Lifespan Extension by Methylamine
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in H. polymorpha, because the medium of glucose cultures acidified

more strongly relative to those containing ethanol- or methanol.

Although placing the glucose-grown cells in fresh buffer signifi-

cantly extended the lifespan, neither the median nor maximum

lifespan reached values obtained for methanol or ethanol cultures

(Table 1). One explanation may be that prior to placing the

glucose-grown cells in buffer, they already experienced the toxic

effects related to the low pH when reaching the stationary phase.

In addition to medium acidification, ROS are important factors

in determining yeast CLS. ROS initially were assumed to be

harmful as they caused oxidative damage. However, data have

been presented indicating that ROS also can have a positive effect

as signaling molecules that induce stress responsive genes

Figure 4. CLS extension relates to MA concentrations in the
cultivation media. (A) CLS of wild-type cells grown on methanol in
the presence of 0.25% ammonium sulphate (AS) or 0.25% or 0.0025%
MA. Bars indicate the standard error of mean of four experiments (B)
Growth curves of wild-type H. polymorpha grown on methanol in the
presence of different concentrations of MA (0.25%, 0.025% or 0.0025%).
Optical densities are expressed as absorption at 600 nm. (C) Cell
concentrations expressed as number of cells per ml in stationary
cultures grown on media containing 0.25% or 0.0025% MA.
doi:10.1371/journal.pone.0048982.g004

Figure 5. MA metabolism is required for CLS extension. (A) CLS
of cells which were pregrown on methanol/AS or methanol/MA until
the stationary phase and subsequently harvested and resuspended in
phosphate buffer. (B) CLS of wild-type and Damo cultures grown on
methanol in the presence of 0.25% MA or 0.25% AS. Bars indicate the
standard error of mean of two independent experiments. (C) Levels of
free amines (-NH2) in the cultivation media of cultures of wild-type and
Damo cells grown on methanol in the presence of 0.25% MA. The level
of free amines in medium containing 0.25% MA before inoculation was
set to 100%. Bars indicate the standard error of mean of two
independent experiments. Statistical analysis was performed by student
t-test, * = p,0.05; ** = p,0.01.
doi:10.1371/journal.pone.0048982.g005

Yeast Lifespan Extension by Methylamine
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(hormesis). Moreover, recent findings suggest that in S. cerevisiae

also the type of ROS (e.g. superoxide versus hydrogen peroxide)

and the growth stage at which they occur are important for

lifespan extension [23,24], which illustrates a complex role of ROS

in yeast aging.

We observed that in H. polymorpha ROS levels were equally low

during the first days of the CLS experiments in glucose, ethanol

and methanol cultures. Because in this period differences in

survival were already evident, ROS levels alone most likely are not

Figure 6. Specific AMO activities and AMO protein levels
decrease during chronological aging. (A) Detection of AMO
activities in wild-type cells in cultures grown on methanol in the
presence of 0.25% methylamine during chronological aging. Bars
indicate the standard error of mean of two independent experiments.
(B) Western blot analysis of AMO protein levels in wild-type cells grown
in the presence of 0.25% MA or on 0.25% ammonium sulphate (AS).
Blots were decorated with specific antibodies against AMO. Formate
dehydrogenase (FD) was used as loading control. (C) Quantification of
the AMO levels using densitometric scanning of the blots. Two
independent blots were quantified. The error bars indicate the standard
error. The loading control was set to 100%.
doi:10.1371/journal.pone.0048982.g006

Figure 7. Schematic overview of MA metabolism in H.
polymorpha. MA is oxidized by peroxisomal amine oxidase (AMO) to
generate formaldehyde, ammonium and hydrogen peroxide. After
binding of glutathione (GSH) to formaldehyde, the produced S-
hydroxymethylglutathione is converted to S-formylglutathione by
formaldehyde dehydrogenase (FLD). GSH is removed by S-formyl
glutathione hydrolase (FGH) and formate is converted to CO2 by
formate dehydrogenase (FDH). Oxidation of formaldehyde generates 2
molecules of NADH that are used for ATP generation in mitochondria
[30].
doi:10.1371/journal.pone.0048982.g007

Figure 8. Formaldehyde extends the CLS. Wild-type cells were
grown on methanol media containing 0.25% ammonium sulphate or
0.25% MA. Upon reaching the stationary phase, the ammonium
sulphate containing culture was supplemented with 37.8 mM formal-
dehyde. The MA cultures were kept in the same medium as a control.
Bars indicate the standard error of mean of 2 experiments.
doi:10.1371/journal.pone.0048982.g008

Yeast Lifespan Extension by Methylamine
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the major determinants in the observed differences in lifespan. At

later stages ROS levels increased in the methanol and ethanol

cultures. Given the multifactorial nature of CLS, it is yet unclear

whether this may have caused negative and/or positive effects.

Also, ROS measurements performed with fluorescent dyes have to

be interpreted with care when cells are grown on different carbon

sources. We used DHR, which forms fluorescent rhodamine

efficiently upon reaction with free NOH or NO2
N radicals, but

requires a catalyst for oxidation by O2
N or H2O2 [25]. Important

catalysts are iron, heme and cytochrome c oxidase. These catalysts

as well as the composition of the ROS may vary significantly upon

growth of H. polymorpha cells on the different carbon sources. For

instance, the peroxisomal heme containing enzyme catalase is

strongly induced on methanol, to moderate levels on ethanol but

repressed on glucose [26]. Hence, relative to glucose heme levels

and most likely also iron (e.g. released from catalase in aged cells)

are may be significantly higher in methanol and ethanol cells

which may add to the observed increase in ROS levels. Together,

our data lend support to the view that cultivation of cells at

conditions that require peroxisomes for growth is beneficial for the

lifespan of the cells.

It cannot be excluded that other factors also contribute to the

short CLS of glucose-grown H. polymorpha. For instance, by-

products of glycolysis like methylglyoxal were described to have a

negative impact on cell survival [27]. Further studies are required

to fully dissect all factors involved.

Our data indicate that the presence of methylamine (MA) as

sole nitrogen source instead of ammonium sulphate resulted in a

significant extension of the chronological lifespan of methanol-

grown cells. Because no differences in pH values were observed,

medium acidification is not a major factor in the observed lifespan

differences.

Amines have been described to universally enhance the lifespan

of various models. For instance, spermidine acts as an anti-aging

compound by inducing autophagy [11]. Because we also observed

the positive effect of MA on viability in H. polymorpha Datg1 cells

that are defective in autophagy (Fig. 3), MA is unlikely to alter

autophagy processes in this yeast species. Moreover, based on

electron microscopy studies we did not obtain any morphological

indications that MA induces or reduces autophagy in wild-type

cells (data not shown).

Our studies indicate that MA oxidation by AMO and the

subsequent generation of extra NADH, is an important reason for

the lifespan extension by MA. We show that the positive effects of

MA do not occur in an AMO deficient strain or when MA is

removed from the medium, but occur again when formaldehyde,

the oxidation product of MA, was added to the stationary phase

cultures. This led us to conclude that the generation of additional

NADH in carbon starved cells can postpone cell death by

providing energy and reducing the intracellular environment.

Indeed, our data (Fig. 2B) suggest that NADH generation due to

methylamine metabolism changes the intracellular redox balance

in the cell leading to lower ROS levels. Hence, the relatively high

ROS levels observed in methanol/AS cultures (see also Fig. 1C)

might present a detrimental effect.

Similar to MA, D-alanine can also be used as a nitrogen source

by H. polymorpha. Oxidative deamination of D-alanine generates

pyruvate and ammonia. We anticipate that production of pyruvate

during chronological aging generates energy and extends the CLS

in similar fashion as MA [18,28].

Summarizing, our data are consistent with the view that

multiple factors may be involved in lifespan extension caused by

MA. Our data indicate that production of NADH generated from

MA metabolism is the major factor. NADH contributes to ATP

generation but also to reducing ROS. Additional factors may be

involved as well, such as toxicity of ammonium in methanol/AS

cultures, like recently reported for S. cerevisiae [29].).

Chronological aging of yeast cells has been proposed as a model

for the post-mitotic cells in higher eukaryotes [19], a situation

which is obviously dissimilar to starving cells in yeast stationary

phase cultures. However, the use of an additional NADH

generation system, which does not support growth, can make

findings of yeast systems more applicable as model for higher

eukaryotic cells.
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