1,628 research outputs found

    The Wilson renormalization group for low x physics: towards the high density regime

    Full text link
    We continue the study of the effective action for low xx physics based on a Wilson renormalization group approach. We express the full nonlinear renormalization group equation in terms of the average value and the average fluctuation of extra color charge density generated by integrating out gluons with intermediate values of xx. This form clearly exhibits the nature of the phenomena driving the evolution and should serve as the basis of the analysis of saturation effects at high gluon density at small xx.Comment: 14 pages, late

    The Chromospheric Activity and Ages of M Dwarf Stars in Wide Binary Systems

    Get PDF
    We investigate the relationship between age and chromospheric activity for 139 M dwarf stars in wide binary systems with white dwarf companions. The age of each system is determined from the cooling age of its white dwarf component. The current limit for activity-age relations found for M dwarfs in open clusters is 4 Gyr. Our unique approach to finding ages for M stars allows for the exploration of this relationship at ages older than 4 Gyr. The general trend of stars remaining active for a longer time at later spectral type is confirmed. However, our larger sample and greater age range reveals additional complexity in assigning age based on activity alone. We find that M dwarfs in wide binaries older than 4 Gyr depart from the log-linear relation for clusters and are found to have activity at magnitudes, colors and masses which are brighter, bluer and more massive than predicted by the cluster relation. In addition to our activity-age results, we present the measured radial velocities and complete space motions for 161 white dwarf stars in wide binaries.Comment: 22 pages including 9 figures and 5 tables. Accepted for publication in The Astronomical Journa

    Speckle Interferometry of Metal-Poor Stars in the Solar Neighborhood. I

    Full text link
    We report the results of speckle-interferometric observations of 109 high proper-motion metal-poor stars made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We resolve eight objects -- G102-20, G191-55, BD+19^\circ~1185A, G89-14, G87-45, G87-47, G111-38, and G114-25 -- into individual components and we are the first to astrometrically resolve seven of these stars. New resolved systems included two triple (G111-38, G87-47) and one quadruple (G89-14) star. The ratio of single-to-binary-to-triple-to-quadruple systems among the stars of our sample is equal to 71:28:6:1.Comment: 8 pages, 4 figures, accepted to Astrophysical Bulleti

    Multicenter Study of Staging and Therapeutic Predictors of Hepatocellular Carcinoma Recurrence Following Transplantation

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146434/1/lt25194.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146434/2/lt25194_am.pd

    Determination of the longitudinal structure function FLF_{L} at HERA

    Get PDF
    Recent results from the HERA experiment H1 on the longitudinal stucture function FLF_{L} of the proton are presented. They include proton structure function analyses with particular emphasis on those kinematic regions which are sensitive to FLF_{L}. All results can be consistently described within the framework of perturbative QCD.Comment: 16 pages, 11 figures (requires iopart, iopams and epsfig); Talk presented in the Intern. Workshop on New Trends in HERA Physics 2001, 17-22 June 2001, Ringberg Castle, Tegernsee, Germany; To appear in the Proceeding

    Discovery of a strong magnetic field in the rapidly rotating B2Vn star HR 7355

    Get PDF
    We report the detection of a strong, organized magnetic field in the helium-variable early B-type star HR 7355 using spectropolarimetric data obtained with ESPaDOnS on the 3.6-m Canada-France-Hawaii Telescope within the context of the Magnetism in Massive Stars (MiMeS) Large Program. HR 7355 is both the most rapidly rotating known main-sequence magnetic star and the most rapidly rotating helium-strong star, with vsiniv \sin i = 300 ±\pm 15 km s1^{-1} and a rotational period of 0.5214404 ±\pm 0.0000006 days. We have modeled our eight longitudinal magnetic field measurements assuming an oblique dipole magnetic field. Constraining the inclination of the rotation axis to be between 3838^{\circ} and 8686^{\circ}, we find the magnetic obliquity angle to be between 3030^{\circ} and 8585^{\circ}, and the polar strength of the magnetic field at the stellar surface to be between 13-17 kG. The photometric light curve constructed from HIPPARCOS archival data and new CTIO measurements shows two minima separated by 0.5 in rotational phase and occurring 0.25 cycles before/after the magnetic extrema. This photometric behavior coupled with previously-reported variable emission of the Hα\alpha line (which we confirm) strongly supports the proposal that HR 7355 harbors a structured magnetosphere similar to that in the prototypical helium-strong star, σ\sigma Ori E.Comment: 6 pages, 3 figures. Accepted for publication in MNRAS Letter

    Signals for Vector Leptoquarks in Hadronic Collisions

    Full text link
    We analyze systematically the signatures of vector leptoquarks in hadronic collisions. We examine their single and pair productions, as well as their effects on the production of lepton pairs. Our results indicate that a machine like the CERN Large Hadron Collider (LHC) will be able to unravel the existence of vector leptoquarks with masses up to the range of 22--33 TeV.Comment: 15 pages and 5 figures (available upon request or through anonymous ftp), revtex3, IFUSP-P 108

    Soft Contributions to Hard Pion Photoproduction

    Full text link
    Hard, or high transverse momentum, pion photoproduction can be a tool for probing the parton structure of the beam and target. We estimate the soft contributions to this process, with an eye toward delineating the region where perturbatively calculable processes dominate. Our soft process estimate is based on vector meson dominance and data based parameterizations of semiexclusive hadronic cross sections. We find that soft processes dominate in single pion photoproduction somewhat past 2 GeV transverse momentum at a few times 10 GeV incoming energy. The recent polarization asymmetry data is consistent with the perturbative asymmetry being diluted by polarization insensitive soft processes. Determining the polarized gluon distribution using hard pion photoproduction appears feasible with a few hundred GeV incoming energy (in the target rest frame).Comment: 6 pages, 5 figure

    Leptoquark pair production at the Fermilab Tevatron: Signal and backgrounds

    Full text link
    We perform a Monte-Carlo simulation of scalar leptoquark pair production at the Tevatron (energy =1.8 TeV and luminosity =100 pb^{-1}) with ISAJET. We also investigate the dominant sources of Standard Model background: Z*jj, ZZ production and heavy quark top-antitop. We find that the top-antitop background is the most important except near the Z pole where the Z*jj background is peaked. We also evaluate the signal-to-background ratio and find a discovery reach of 130 GeV (170 GeV) for a branching ratio of B(LQ-> eq)=0.5 (B=1).Comment: 8 pages, 6 figures, latex (revtex

    Spectroscopic survey of Kepler stars. I. HERMES/Mercator observations of A- and F-type stars

    Get PDF
    The Kepler space mission provided near-continuous and high-precision photometry of about 207 000 stars, which can be used for asteroseismology. However, for successful seismic modeling it is equally important to have accurate stellar physical parameters. Therefore, supplementary ground-based data are needed. We report the results of the analysis of high-resolution spectroscopic data of A- and F-type stars from the Kepler field, which were obtained with the HERMES spectrograph on the Mercator telescope. We determined spectral types, atmospheric parameters and chemical abundances for a sample of 117 stars. Hydrogen Balmer, Fe i, and Fe ii lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. The atmospheric parameters obtained were compared with those from the Kepler Input Catalogue (KIC), confirming that the KIC effective temperatures are underestimated for A stars. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The analysed sample comprises stars with approximately solar chemical abundances, as well as chemically peculiar stars of the Am, Ap, and λ Boo types. The distribution of the projected rotational velocity, vsin i, is typical for A and F stars and ranges from 8 to about 280 km s−1, with a mean of 134 km s−1
    corecore