204 research outputs found

    Champion Device Architectures for Low-Cost and Stable Single-Junction Perovskite Solar Cells

    Get PDF
    High power conversion efficiencies (PCE), low energy payback time (EPBT), and low manufacturing costs render perovskite solar cells (PSCs) competitive; however, a relatively low operational stability impedes their large-scale deployment. In addition, state-of-the-art PSCs are made of expensive materials, including the organic hole transport materials (HTMs) and the noble metals used as the charge collection electrode, which induce degradation in PSCs. Thus, developing inexpensive alternatives is crucial to fostering the transition from academic research to industrial development. Combining a carbon-based electrode with an inorganic HTM has shown the highest potential and should replace noble metals and organic HTMs. In this review, we illustrate the incorporation of a carbon layer as a back contact instead of noble metals and inorganic HTMs instead of organic ones as two cornerstones for achieving optimal stability and economic viability for PSCs. We discuss the primary considerations for the selection of the absorbing layer as well as the electron-transporting layer to be compatible with the champion designs and ultimate architecture for single-junction PSCs. More studies regarding the long-term stability are still required. Using the recommended device architecture presented in this work would pave the way toward constructing low-cost and stable PSCs.Copyright © 2022 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0

    Correlated Electrical and Chemical Nanoscale Properties in Potassium-Passivated, Triple-Cation Perovskite Solar Cells

    Get PDF
    Perovskite semiconductors are an exciting class of materials due to their promising performance outputs in photovoltaic devices. To boost their efficiency further, researchers introduce additives during sample synthesis, such as KI. However, it is not well understood how KI changes the material and, often, leaves precipitants. To fully resolve the role of KI, multiple microscopy techniques are applied and the electrical and chemical behavior of a Reference (untreated) and a KI‐treated perovskite are compared. Upon correlation between electrical and chemical nanoimaging techniques, it is discovered that these local properties are linked to the macroscopic voltage enhancement of the KI‐treated perovskite. The heterogeneity revealed in both the local electrical and chemical responses indicates that the additive partially migrates to the surface, yet surprisingly does not deteriorate the performance locally, rather, the voltage response homogeneously increases. The research presented within provides a diagnostic methodology, which connects the nanoscale electrical and chemical properties of materials, relevant to other perovskites, including multication and Pb‐free alternatives

    Correlated Electrical and Chemical Nanoscale Properties in Potassium-Passivated, Triple-Cation Perovskite Solar Cells

    Get PDF
    Perovskite semiconductors are an exciting class of materials due to their promising performance outputs in optoelectronic devices. To boost their efficiency further, researchers introduce additives during sample synthesis, such as KI. However, it is not well understood how KI changes the material and, often, leaves precipitants. To fully resolve the role of KI, a multiple microscopy techniques is applied and the electrical and chemical behavior of a Reference (untreated) and a KI-treated perovskite are compared. Upon correlation between electrical and chemical nanoimaging techniques, it is discovered that these local properties are linked to the macroscopic voltage enhancement of the KI-treated perovskite. The heterogeneity revealed in both the local electrical and chemical responses indicates that the additive partially migrates to the surface, yet surprisingly; does not deteriorate the performance locally, rather, the voltage response homogeneously increases. The research presented within provides a diagnostic methodology, which connects the nanoscale electrical and chemical properties of materials, relevant to other perovskites, including multication and Pb-free alternatives.University of Maryland All-S.T.A.R. Fellowship Hulka Energy Research Fellowship National Science Foundation US Department of Energy The Royal Society Office of Naval Researc

    BVVL/ FL: features caused by SLC52A3 mutations; WDFY4 and TNFSF13B may be novel causative genes

    Get PDF
    Brown-Vialetto-Van Laere (BVVL) and Fazio-Londe are disorders with amyotrophic lateral sclerosis-like features, usually with recessive inheritance. We aimed to identify causative mutations in 10 probands. Neurological examinations, genetic analysis, audiometry, magnetic resonance imaging, biochemical and immunological testings, and/or muscle histopathology were performed. Mutations in known causative gene SLC52A3 were found in 7 probands. More importantly, only 1 mutated allele was observed in several patients, and variable expressivity and incomplete penetrance were clearly noted. Environmental insults may contribute to variable presentations. Putative causative mutations in other genes were identified in 3 probands. Two of the genes, WDFY4 and TNFSF13B, have immune-related functions. Inflammatory responses were implicated in the patient with the WDFY4 mutation. Malfunction of the immune system and mitochondrial anomalies were shown in the patient with the TNFSF13B mutation. Prevalence of heterozygous SLC52A3 BVVL causative mutations and notable variability in expressivity of homozygous and heterozygous genotypes are being reported for the first time. Identification of WDFY4 and TNFSF13B as candidate causative genes supports conjectures on involvement of the immune system in BVVL and amyotrophic lateral sclerosis

    Modelling reconfigurable manufacturing systems with coloured timed Petri nets

    Get PDF
    International audienceReconfigurable manufacturing systems (RMSs) have been acknowledged as a promising means of providing manufacturing companies with the required production capacities and capabilities. This is accomplished through reconfiguring system elements over time for a diverse set of individualized products often required in small quantities and with short delivery lead times. Recognizing the importance of dynamic modeling and visualization in decision-making support in RMSs and the limitations of current research, we propose in this work to model RMSs with Petri net (PN) techniques focusing on the process of reconfiguring system elements while considering constraints and system performance. In view of the modeling challenges, including variety handling, production variation accommodation, machine selection, and constraint satisfaction, we develop a new formalism of colored timed PNs. In conjunction with colored tokens and timing in colored and timed PNs, we also define a reconfiguration mechanism to meet modeling challenges. An application case from an electronics company producing mobile phone vibration motors is presented. Also reported are system analysis and application results, which show how the proposed formalism can be used in the reconfiguration decision making process

    Armed conflicts have an impact on the spread of tuberculosis: the case of the Somali Regional State of Ethiopia

    Get PDF
    <p>Abstract</p> <p/> <p>A pessimistic view of the impact of armed conflicts on the control of infectious diseases has generated great interest in the role of conflicts on the global TB epidemic. Nowhere in the world is such interest more palpable than in the Horn of Africa Region, comprising Ethiopia, Somalia, Eritrea, Djibouti, Kenya and Sudan. An expanding literature has demonstrated that armed conflicts stall disease control programs through distraction of health system, interruption of patients' ability to seek health care, and the diversion of economic resources to military ends rather than health needs. Nonetheless, until very recently, no research has been done to address the impact of armed conflict on TB epidemics in the Somali Regional State (SRS) of Ethiopia.</p> <p>Methods</p> <p>This study is based on the cross-sectional data collected in 2007, utilizing structured questionnaires filled-out by a sample of 226 TB patients in the SRS of Ethiopia. Data was obtained on the delay patients experienced in receiving a diagnosis of TB, on the biomedical knowledge of TB that patients had, and the level of self-treatment by patients. The outcome variables in this study are the delay in the diagnosis of TB experienced by patients, and extent of self-treatment utilized by patients. Our main explanatory variable was place of residence, which was dichotomized as being in 'conflict zones' and in 'non-conflict zones'. Demographic data was collected for statistical control. Chi-square and Mann-Whitney tests were used on calculations of group differences. Logistic regression analysis was used to determine the association between outcome and predictor variables.</p> <p>Results</p> <p>Two hundred and twenty six TB patients were interviewed. The median delay in the diagnosis of TB was 120 days and 60 days for patients from conflict zones and from non-conflict zones, respectively. Moreover, 74% of the patients residing in conflict zones undertook self-treatment prior to their diagnosis. The corresponding proportion from non-conflict zones was 45%. Fully adjusted logistic regression analysis shows that patients from conflict zones had significantly greater odds of delay (OR = 3.06; 95% CI: 1.47-6.36) and higher self treatment utilization (OR = 3.34; 95% CI: 1.56-7.12) compared to those from non-conflict zones.</p> <p>Conclusion</p> <p>Patients from conflict zones have a longer delay in receiving a diagnosis of TB and have higher levels of self treatment utilization. This suggests that access to TB care should be improved by the expansion of user friendly directly observed therapy short-course (DOTS) in the conflict zones of the region.</p

    Cerebrospinal fluid biomarker candidates associated with human WNV neuroinvasive disease

    Get PDF
    During the last decade, the epidemiology of WNV in humans has changed in the southern regions of Europe, with high incidence of West Nile fever (WNF) cases, but also of West Nile neuroinvasive disease (WNND). The lack of human vaccine or specific treatment against WNV infection imparts a pressing need to characterize indicators associated with neurological involvement. By its intimacy with central nervous system (CNS) structures, modifications in the cerebrospinal fluid (CSF) composition could accurately reflect CNS pathological process. Until now, few studies investigated the association between imbalance of CSF elements and severity of WNV infection. The aim of the present study was to apply the iTRAQ technology in order to identify the CSF proteins whose abundances are modified in patients with WNND. Forty-seven proteins were found modified in the CSF of WNND patients as compared to control groups, and most of them are reported for the first time in the context of WNND. On the basis of their known biological functions, several of these proteins were associated with inflammatory response. Among them, Defensin-1 alpha (DEFA1), a protein reported with anti-viral effects, presente

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systetns, sample registration systetns, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings Globally, 18.7% (95% uncertainty interval 18.4-19.0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58.8% (58.2-59.3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48.1 years (46.5-49.6) to 70.5 years (70.1-70.8) for men and from 52.9 years (51.7-54.0) to 75.6 years (75.3-75.9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49.1 years (46.5-51.7) for men in the Central African Republic to 87.6 years (86.9-88.1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216.0 deaths (196.3-238.1) per 1000 livebirths in 1950 to 38.9 deaths (35.6-42.83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5.4 million (5.2-5.6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult tnales, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, wotnen, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing. Copyright C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore