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MODELING RECONFIGURABLE MANUFACTURING SYSTEMS WITH 

COLORED TIMED PETRI NETS

Lianfeng Zhang∗† and Brian Rodrigues‡

†Department of Operations, University of Groningen, 
Landleven 5, 9747 AD Groningen, The Netherlands

‡Lee Kong Chian School of Business, Singapore Management University
 50 Stamford Road, Singapore 178899 

ABSTRACT

Reconfigurable manufacturing systems (RMSs) have been acknowledged as a 

promising means of providing manufacturing companies with the required production 

capacities and capabilities. This is accomplished through reconfiguring system 

elements over time for a diverse set of individualized products often required in small 

quantities and with short delivery lead times. Recognizing the importance of dynamic 

modeling and visualization in decision-making support in RMSs and the limitations of 

current research, we propose in this work to model RMSs with Petri net (PN) 

techniques focusing on the process of reconfiguring system elements while 

considering constraints and system performance. In view of the modeling challenges, 

including variety handling, production variation accommodation, machine selection, 

and constraint satisfaction, we develop a new formalism of colored timed PNs. In 

conjunction with colored tokens and timing in colored and timed PNs, we also define 

a reconfiguration mechanism to meet modeling challenges. An application case from

an electronics company producing mobile phone vibration motors is presented. Also 

reported are system analysis and application results, which show how the proposed 

formalism can be used in the  reconfiguration  decision making process. 

KEYWORD

Reconfigurable manufacturing systems, colored PNs, timed PNs, reconfiguration 

mechanism. 

1. INTRODUCTION

With increasing global competition, traditional manufacturing systems, e.g., 

dedicated manufacturing systems, mass production systems, flexible manufacturing 

systems, have become inadequate in supporting the rapid production of customized 

products with low costs and high profitability (Koren and Ulsoy, 1997). In response to 

∗ Corresponding author. Email: L.Zhang@rug.nl
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the limitations of such systems and the fast changing environments, reconfigurable 

manufacturing systems (RMSs) have been put forward as a promising means for

manufacturing companies to produce products while meeting individualized customer 

requirements (Koren et al., 1999). Since companies must provide the needed 

capacities and capabilities for fulfilling diverse products which are often required in

small quantities and with short delivery lead times, a major concern in RMSs is the 

quick reconfiguration of existing system elements - manufacturing resources such as 

machines, the associated tools, fixtures and setups - to provide changing production 

requirements (Mehrabi et al., 2000). Current research has approached RMSs from 

different aspects and delivered a number of analytical models (e.g., Abdi and Labib,

2004b; Qiu et al., 2005; Spicer et al., 2005; Youssef and El Maraghy, 2006). On one 

hand, such models provide insight into RMS planning, design and operations. On the 

other hand, the complexity involved in the model formulation tends to limit 

understanding. Moreover, the implicit assumptions underpinning these models, which 

often contradict the counterparts in the real world, make model implementation 

difficult.        

While most researchers focus on problem formulation and solution development 

statically, limited attempts have been made to explore decision-making support based 

on dynamic and visual modeling techniques. Recognizing the importance of dynamic 

modeling and visualization in decision-making support in RMSs and the limitations of 

current research, we propose to model RMSs with focus on the process of 

reconfiguring manufacturing resources from a number of alternatives for given

products while considering constraints and system performance. This has the potential 

to help companies make decisions in reconfiguring manufacturing resources to fulfill 

fast changing production requirements. Along with the fundamental issues in RMSs, 

we first highlight several challenges in RMS modeling as follows:        

1.1 Challenges in modeling RMSs

(i)     Variety handling

Diverse custom-specific products are involved in an RMS. Although current 

design practice, e.g., platform-based product family design, has brought similarities

into end-products, the large number of individualized products inevitably lead to a 

high variety of material items, be they raw materials, parts, WIP (work in process), or 

assemblies. Since their fulfillment is the central focus of RMSs, it is essential to 
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capture a high variety of material items and end-products in system models. Further, 

in spite of the inclusion of high product variety, a compact and representative model is 

needed to facilitate users’ understanding, interpretation and for easy communication. 

Consequently, this highlights the importance of designing a proper modeling 

formalism to cope with high product variety. 

(ii)     Process variation accommodation

The large number of individual products and the resulting material items are 

associated with diverse design specifications, i.e., design parameters along with the 

specific value instances. In turn, changes in design specifications lead to many 

changeovers in production processes of both material items and end-products. Such 

changeovers are reflected as variations in machines, operations and operations 

sequences. With an attempt to provide companies with decision support, e.g., in 

selecting proper machines (including the associated tools, fixtures and setups), a

system model should be able to capture and reflect these variations. Accordingly, the 

modeling formalism must provide proper mechanisms to accommodate changes.

(iii) Machine selection

In RMSs, a number of production processes are feasible to produce one end-

product. Such processes relate to different configurations of different and/or same 

machines. In practice, only one process is adopted to produce an end-product. 

Moreover, it is common that different machines are able to perform operations on 

same material items to complete same jobs, where, in most cases, these operations 

incur different cycle times. Similarly, only one machine is used to process material 

items at one time. On the other hand, companies are often forced to produce various 

products in concurrent time periods using same sets of manufacturing resources. This 

highlights the importance of selecting proper machines and processes to produce 

diverse end-products. The selection will need to contribute to the improvement of 

system performance attributes, e.g., throughput, machine utilization, quality. Hence, a

modeling formalism should facilitate decision making in selecting machines and 

processes.  

(iv)    Constraint satisfaction

In RMSs, many restrictions or constraints can be observed, especially in the 

production process-planning phase. These constraints are inherent in the selection of 
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machines and operations. For example, if a machine can perform operations only on 

alloy steel, it would be inappropriate to adopt it to perform operations on aluminum. 

The constraints are also associated with the specific design of product items, the 

capabilities of machines, and the availabilities of material items and machines. It is 

fundamental to cope with such constrains in modeling RMSs in order to build viable 

models. Accordingly, a modeling formalism should provide the ability to address the 

constraints in RMSs.   

1.2 Strategy for solution

In view of their executability and graphical representation, PNs have been well 

recognized as a powerful modeling, simulation and evaluation tool for complex flows 

and processes (Peterson, 1981). Since PN models are graphical and derived from the 

logical sequence of systems, they are easy to understand and to communicate. Many 

extensions have been made to PNs to enhance the modeling power, among which

coloured Petri nets (CPNs, Jensen 1995) and timed Petri nets (TPNs, Ramachandani,

1974) are of particular interest in this work. CPNs are able to provide a concise, 

flexible and manageable representation of large manufacturing systems by attaching a 

variety of colors to tokens (Jensen, 1995). By including timing, TPNs can capture the 

physical behaviors of systems by assuming specific durations for various system 

activities. 

With decision making support as an objective, this paper applies PN techniques to 

model RMSs. A new formalism of colored timed PNs (CTPNs) is proposed to cope

with the modeling challenges. The basic concepts of CPNs and TPNs are adopted and 

further extended to define elements in the proposed modeling formalism. Colored 

tokens are used to represent various objects, e.g., raw materials, parts, WIP, 

assemblies, machines. Variety handling is accomplished by attaching specific data to 

colored tokens. A mechanism including reconfigurable transitions, inhibitor arcs and 

machine class concept places are defined to accommodate production changeovers. In 

conjunction with colored tokens, timing is introduced to address the selection of 

proper machines and constraint satisfaction. 

The rest of the paper is structured as follows: Section 2 provides a review of 

literature in RMSs, PNs and their applications in manufacturing. The basic PNs and 

the proposed formalism are introduced in Section 3, following which details of 

modeling RMSs in terms of material items, machines, cycle times and operations 
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using the formalism are presented in Section 4. Section 5 applies the formalism to 

model an RMS for producing vibration motors for mobile phones in an electronics 

company. System analysis and application results are presented as well. Concluding 

remarks together with future research possibilities are provided in Section 6. 

2. RELATED WORK

2.1 RMSs development support

In their keynote paper, Koren et al. (1999) define an RMS and further discuss the 

key characteristics: modularity, integrability, customization, convertibility, scalability, 

and diagnosability. Since then many researchers have reported their work in planning, 

design and reconfiguration issues in RMSs. Two streams can be observed: process 

family identification and RMS design support. Some methods have been developed to 

cope with the identification of product families in accordance with proper 

manufacturing systems. Yigit and Allahverdi (2003) address the planning of modular 

product variety to be provided in an RMS using an integer nonlinear program. In a 

design strategy for RMSs, Abdi and Labib (2003) present a model based on analytical 

hierarchical process (AHP) to assist in the selection of the right manufacturing 

systems in conjunction with product families. As an extension of their previous work, 

Abdi and Labib (2004a) discuss a reconfiguration link between markets and 

manufacturing for grouping products into families and further assigning the product 

families to manufacturing systems. Again, AHP is used to structure the decision 

making process. Similarly, Galan et al. (2007) develop a systematic approach based on 

AHP and AVLC (average linkage clustering algorithm) to forming product families 

for a given RMS.     

In the stream of RMS design support, research efforts have delivered methods to 

facilitate decision making in RMSs design. Abdi and Labib (2004b) address the 

evaluation of economic and manufacturing feasibility before costly implementation of 

an RMS design. Qiu et al. (2005) present an approach based on a non-cooperative 

game theoretic technique to address resource sharing in RMSs. Aiming at decision 

making in both the initial design and the reconfiguration stage, Youssef and 

ElMaraghy (2006) detail a genetic algorithm-based model to determine the number 

and arrangement of machines, machine types and operations assignment in different 

aspects of RMS configuration. With focus on design issues at the machine level in 

RMSs, Spicer et al. (2005) present an architecture for scalable machines in order to 
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address one of the key characteristics of RMSs - scalability. Similarly, Katz (2007) 

introduces a series of principles for designing reconfigurable machines. However, the 

design approach aims at designing machines to be used in high-volume production 

lines rather than small volume production that are typical when RMSs are used. 

To summarize, in spite of the many research efforts in addressing different issues 

in RMSs design and operations, the literature review suggests that support for decision 

making in RMSs based on dynamic modeling and visual representation is scarce. This 

is especially true with respect to the stage of reconfiguring manufacturing resources in 

response to the diverse production requirements of individualized products. 

2.2 PNs applications in manufacturing

PNs are a family of operational formalism providing a framework for 

manufacturing systems design and operations. They have emerged as a promising 

approach to modeling manufacturing systems. As a graphical tool, PNs serve as a 

visual modeling technique and as a communication aid for describing models. As a 

mathematical tool, PNs can be exploited to perform qualitative and quantitative 

analysis of systems being modeled. 

Moore and Gupta (1996) survey PNs applications in manufacturing and present a 

comprehensive review of PN models of flexible and automated manufacturing systems. 

Focusing on real time control and performance evaluation, Reddy et al. (1993) present 

an algorithm for qualitative and quantitative analysis of TPN models in manufacturing 

systems. Ravi Raju and Krishnaiah Chetty (1993) discuss a PN-based methodology for 

modeling and simulating AGVs in flexible manufacturing systems. Recognizing the 

need of expanding the power of TPNs due to the randomness and the number of 

variables involved, they introduce extended TPNs in their methodology. Liu et al. 

(2002) propose a workflow modeling language-based CPN called WFCP-nets 

(workflow based on coloured Petri nets) and apply it to the product development 

workflow. Chin et al. (2006) put forward methodologies based on the integration of 

IDEF 0 (Integrated DEFinition 0) and CPNs for modeling and simulating complicated 

manufacturing processes.  Yu et al. (2003) present a KTCOPN (knowledge-based 

timed colored object-oriented PN) for modeling reconfigurable assembly systems 

(RASs). As claimed by the authors, by combining knowledge and object-oriented 

methods into timed colored PNs, the characteristics of RASs can be fully expressed.

Researchers, e.g., Dotoli and Fanti (2004), Nandula and Dutta (2000), Jiang et al. 
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(2000), have also applied colored PNs, timed PNs and colored timed PNs to 

manufacturing systems modeling, analysis and control. The observation on available 

PN models is that most researchers have adopted the basic ideas of colored and timed 

PNs and further extended them to accommodate different modeling requirements of 

their own problem domains. Similarly, in this work, bearing in mind the modeling 

difficulties we develop a new formalism of CTPNs, which integrates the principles of 

CTNs and TPNs, for modeling RMSs. 

3. MODELING FORMALISM BASED ON COLORED TIMED PETRI NETS

3.1 Basic PNs

As shown in Figure 1, a basic PN model can be represented as a directed bipartite 

graph involving two types of nodes: places and transitions, represented by circles and 

bars, respectively and linked by arrowed arcs. An arc can only connect two nodes of 

different types, i.e., either from a place to a transition or from a transition to a place, 

but not nodes of the same type. The places that are connected directly to/from a 

transition are called input/output places of the transition. For example, places 2p  and 

3p  are input places of transition 2t ; 4p  is an output place of 2t . The solid dots in 2p

and 3p  are tokens. In basic PNs, tokens are black and carry no specific data or 

information pertaining to a variety of individual objects. They simply play the role of 

counters with respect to hosting places.

<<<<<<<<<<<<<<<<<<<<<Insert Figure 1 Here>>>>>>>>>>>>>>>>>>

In manufacturing-related PN models, places usually represent conditions or 

manufacturing resources, e.g., machines, buffers. Together with tokens, they indicate 

the status of manufacturing resources or the availability of material items. Transitions 

usually relate to events, processes, or operations. The movement of tokens between 

places is controlled by transitions. Furthermore, the distribution of tokens in places 

defines the state of a system, such as items in a buffer, number of free servers, and 

availability of machines.

Definition 1: A Petri Net is a tuple ( )0M,O,I,T,PPN = , where 

{ }mipP =  is a finite nonempty set of places; 

{ }
njtT = , φ=∩TP  is a finite nonempty set of transitions;
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( ) NP:tI a• and ( ) NP:tO a•  are input/output arc transfer functions that define 

the numbers of tokens in the set of input/output places, •• t/t , of a transition, t , 

respectively; and N  is the set of nonnegative integers; 

NPM a:  is a marking function that defines the distribution of tokens in all places 

when the system is in certain state; and 0M  is the initial marking of the system model.

The dynamic behavior of a PN model is described by markings. When a system 

changes from one state to another state, the marking of the system model changes 

accordingly. Two rules describing the dynamic behavior of a PN model are as follows: 

(1) Enabling rule: A transition Tt ∈ is enabled in a marking M  iff each of its 

input places holds a “sufficient” number of tokens, i.e., iff 

( ) ( ) tp,tIpM •• ∈∀≥ . 

(2) Firing rule: When a transition Tt ∈  fires in M , it creates 'M  by removing a 

certain number of tokens from its input places and depositing a certain number 

of tokens in its output places: ( ) ( ) ( ) ( ) Pp,tOtIpMp'M ∈∀+−= •• .    

3.2 Colored timed PNs 

Unlike the identical black tokens carrying no information in the basic PNs, colors 

are introduced into PNs in order to build a compact and representative model of a 

complex system (Jensen, 1995). The colors essentially are specific data values 

pertaining to the objects represented by tokens. The data value may be of a complex 

type, e.g., a record where the first field is a real number, the second a text string, and 

the third is a list of integer pairs. Since each colored token is uniquely defined by a 

color, and vice versa, there is a one-to-one correspondence between colors and colored 

tokens. Hereafter, colors and colored tokens will be used interchangeably without 

causing any confusion. 

Attempting to analyze the performance of a system model, Ramachandani (1974) 

introduces time delays into PNs, resulting in TPN models. In most TPN models, a 

global clock is defined to time system operations. A time delay is a period of time, 

before the elapse of which a token after its arrival (atomic arrival) in a place cannot be 

used by output transitions, i.e., it remains unavailable, and after the elapse of which 

the token becomes available and can be used to fire transitions. Time delays can be 

attached to places, transitions, or arc expressions (Desrochers and Al-Jaar, 1995; Jesen, 

1995). When time delays are associated with places or transitions, the corresponding 
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processes or operations bear the same time durations in spite of the fact that different 

colored tokens are present. Consequently, the PN models constructed cannot reflect 

the real situation, where different cycle times are required for a machine to process 

different material items. Zuberek (1991) concludes that the nature of the time 

parameter can be deterministic or stochastic. For a comprehensive review of time 

representations in PN models, interested readers are referred to Bowden (2000).

Unlike traditional manufacturing systems, in RMSs multiple machines possess the 

capability to carry out different operations on same material items for same jobs. In 

most cases, such machines take different cycle times to complete operations. To 

capture and model such characteristics, a type of special places is defined in the 

formalism to represent the class concepts of machines that can carry out same jobs. In 

conjunction with machine class concept places, inhibitor arcs are introduced to keep 

more than one machine from accessing same material items. To cope with the 

difficulties in modeling diverse cycle times associated with multiple machines and 

same jobs, arc expression functions, rather than input/output arc transfer functions in 

basic PNs, are introduced. Further, in response to the limitations of associating time 

delays with places and transitions, we define time delays in arc expressions. Thus the 

proposed formalism is able to capture and model different cycle times associated with 

same machines but different material items. Time delays can be obtained from a 

process platform of a process family in relation to a product family (Zhang et al., 

2007). Figure 2 shows the graphical formalism of the proposed CTPNs. 

<<<<<<<<<<<<<<<<<<<<<Insert Figure 2 Here>>>>>>>>>>>>>>>>>>

Definition 2: A Colored Timed Petri Net is a tuple ( )0M,d,h,E,C,,T,PCTPN Σ= , 

where 

(i) P  is a set of places satisfying the relation 

COR PPPP ∪∪= , where

COR P/P/P , φφ =∩=∩ CROR PP,PP  and φ=∩ CO PP  are three finite non-

empty disjoint sets of places. 

A RPp ∈  denotes either a buffer or a machine and OPp ∈  indicates that a 

machine is working on material item(s); a CPp ∈  represents a machine class concept;

(ii) φ=∩TP,T  is a finite nonempty set of transitions such that 

RTL TTTT ∪∪= , where
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RTL T/T/T , φφ =∩=∩ RLTL TT,TT and φ=∩ RT TT  are three finite nonempty 

disjoint sets of logical/timed/reconfigurable transitions, respectively.

Logical transitions are introduced to capture the logic of a system running. Thus, 

their firing indicates the satisfaction of preconditions of operations. The typical 

precondition is the presence of material items and machines to be used. 

Reconfigurable transitions are defined to model the situations, where multiple 

machines can perform same jobs and only one is used eventually. Their firing leads to 

the reconfiguration of proper machines. Timed transitions are defined to represent 

operations, thus their firing takes a certain time duration. Logical and reconfigurable 

transitions are untimed. Their firing is atomic, with 0 time delay;

(iii) Σ  is a finite nonempty set of color sets or token types, each of which includes a 

set of individual colors;

(iv) C  is a color function that maps a place, p , to a set of colors, ( )pC :

( ) ( ){ }
Ipipi c'copC = , where

( )pico  is the occurrence multiplicity of color pic . 

( )pC  represents either material items or machines if RPp ∈ ; a machine working 

on material items if OPp ∈ ; or specific machines if CPp ∈ ; 

(v) h , RC TPh ×⊆  is a set of inhibitor arcs that (1) connect machine class concept 

places to reconfigurable transitions only and (2) assumes two values: 1 and 0.

( ) RC Tt,Pp,1t,ph ∈∈∀=  indicates that there is a token in the machine class concept 

place and the associated reconfigurable transition is disabled and cannot fire. When 

( ) ,0t,ph = no token is in the machine class concept place and the associated 

reconfigurable transition can fire if it is enabled;

(vi) +ℜ∈d  is a set of positive real numbers for time delays of operations; 

(vii) TE is a timed arc expression function that maps an arc, ( ) LO Tt,Pp,p,t ∈∈∀ , 

to a timed arc expression: 

( ) ( )( ) ( ) ( )pCc,pCc,tp,d@c'coc'coPT:E psmjpmpspsjpjp
OLT

mmm
∈∈∈∀+→∧∨× •a ,

where ∨  represents Exclusive OR (XOR); ∧ AND; and →  “if-then”; and d a time 

delay.

A timed arc expression is a set of antecedent-consequent statements with XOR

relationships. Each antecedent contains a set of colored tokens with AND relationships. 
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The colored tokens correspond to these residing in the input places of the logical 

transition. The occurrence of each such colored tokens may not be 1. By default, the 

occurrence of 1 is omitted. The consequent is the colored token to be generated in the 

working machine place. Conforming to common practice, the occurrence of such

output tokens is 1. 

UE  is an untimed arc expression function that maps an arc, other than 

( ) LO Tt,Pp,p,t ∈∈∀ , to an arc expression without time elements: 

( ) ( )pCc,c'coPT:E ptptpt
OLU ∈∀∨¬×¬ a , where

∨  represents XOR.

Untimed arc expressions are defined to specify (1) input tokens for firing any 

transitions; and (2) output tokens after firing timed and reconfigurable transitions.

(viii) M  is the marking function and 0M  is the initial marking.

M  is a combination of three functions: 

( )τρξ ,,M = , where

( ){ } ( )pCc,0c'coP: pipipi =∀∪aξ is a marking function of available tokens;

( ){ } ( )pCc,0c'coP: pjpjpj =∀∪aρ is a marking function of unavailable tokens; 

τ is the remaining-unavailable-time function that assigns positive real values to a 

number of local clocks that measure the remaining time for each unavailable token, if 

any, in a place. If more than one unavailable token with a same color arrives in a place 

at different model times, τ  assigns different remaining times to these tokens 

according to the time delays in their corresponding arc expressions and the model time 

when they arrive in the place. 

A transition t  is enabled in a marking and can fire iff the following rules hold: 

(1) Each tp,p •∈∀  is marked with a “sufficient” number of colored tokens 

indicated by the expression on arc ( )t,p ; and 

(2) The firing of t  does not violate the upper bound on any •∈∀ tp,p .

Transition firing is considered to be instantaneous. A new local clock is created for 

every newly created token and the initial value of the clock is determined by the delay 

in the timed arc expression. When no transition is enabled, the time of the global clock 

is incremented by the value of the smallest local clock. An unavailable token in a 

place, where a local clock reaches zero, becomes available and the clock is destroyed.
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4. MODELING RMSS WITH CTPNS

RMSs are expected to provide required manufacturing capabilities and capacities 

by reconfiguring existing machines on shop floors. In general, two types of machines 

are designed in an RMS. While multifunctional machines have the capability to 

perform a wide range of operations on different types of materials, specialized 

machines carry out a limited number of operations on certain material types. With the 

presence of such machines, it is possible that RMSs can always satisfy diverse 

production requirements. As with other manufacturing systems, RMSs adopt buffers 

as the common solutions between operations/processes to free machines. Since 

production volumes in RMSs are low, it is expected that material items are always 

available as required. Considering these issues, the formalism is developed with the 

following assumptions:

� Machines are always available and never breakdown;

� Buffers, be they for raw materials, parts, assemblies, WIP, or end-products, 

provide the capacities as required; 

� Material items are always available; and 

� Cycle times are deterministic and can be obtained, e.g., from a process 

platform.

Considering high product variety, machines, diverse operations along with many 

cycle time instances, we approach modeling RMSs from system elements as follows:    

4.1 Material items 

The introduction of colored tokens in the formalism allows the modeling of high 

product variety while building compact models. Each token represents a specific item. 

They differ from one another in the attribute values that define them. 

As shown in Figure 3(a), place, 1p , represents a raw material buffer. The token, 

1a ⋅ , in it denotes the raw material of part, a , to be produced. The data that specify 

the token include: part name ( a ), the state (1, indicating it is at the status of raw 

material), type of material (PVC), possible machines ( 1m ), and others. While the 

token in 1p  indicates that the raw material is ready to be processed, the white token in 

3p  in Figure 3(b)  denotes another status of the raw material: being processed by the 

machine represented by 2p . Since the occurrences of tokens in Figure 3 are 1, by 

default they are omitted. For illustrative simplicity and clarity, timed and untimed arc 
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expressions and token definitions are provided when necessary rather than in all 

figures in the following.  

<<<<<<<<<<<<<<<<<<<<<Insert Figure 3 Here>>>>>>>>>>>>>>>>>>

4.2 Manufacturing resources 

Since no considerations are given to machine breakdowns, repair and maintenance,  

machines take two statuses in a system model: idle and busy. If a machine is idle and 

available for the next operation, the corresponding place in the system model contains 

a token. As shown in Figure 3(a), at the current system state, one machine represented 

by 2p  is available as there is a token in it. If a machine is working on material item(s), 

no token would appear in the corresponding place. On the contrary, there would be a 

token in the place representing “machine working on items”. Figure 3(b) shows a busy 

machine represented by the white token in 3p . The data value attached to the white 

token is also shown in the figure. 

4.3 Cycle times 

To capture different cycle times in relation to same jobs and different machines, 

time delays representing cycle times are attached to timed arc expressions. They are 

located at the end of expressions, as shown in Figure 3. The expression in Figure 3(a)

indicates that it will take 5 time units for machine, 1m , to complete the cutting 

operation on raw material, 1a ⋅ . During the 5 time units after firing the logical 

transition, 1t , the token, 2a ⋅ , created in 3p  is unavailable and represented by a white 

dot, as shown in Figure 3(b). At the instant of 5 time units, the operation is completed 

and the token becomes available, as shown in Figure 3(c). Accordingly, the timed 

transition, 2t , representing the cutting operation, is enabled and fires. 

4.4 Operations

Before the occurrence of any operation, input material items and machines to be 

used must present. During the operation, both material items and machines are not 

available for other purposes. After a certain time duration equal to the cycle time, the 

operation completes. Upon completion, the input material items have been consumed 

and a parent item has been generated; the machine is released and waiting for the next 

task. To capture these characteristics, an operation is modeled by several places 

representing buffers, machines, and machine working on items, as shown in Figure 4. 
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The buffer places, 1p  and 4p , contain tokens, 3a ⋅  (representing the input material 

item) and 4a ⋅  (denoting the produced parent item), respectively. The machine place, 

2p , shows the availability of the machine, m . Along with other relevant places, 3p

indicates the operation has not started yet in Figure 4(a); the operation is ongoing in 

Figure 4(b); and the operation has been completed in Figure 4(c).

<<<<<<<<<<<<<<<<<<<<<Insert Figure 4 Here>>>>>>>>>>>>>>>>>

In RMSs, according to the relationships and the machines which perform them, 

operations can be classified into the following types. 

(i) Operations with individual machines

In production practice, for producing end-products, input material items go 

through a series of operations performed by different machines. The starting of the 

following operations depends on the completion of the previous ones and the 

availability of the machines to be used. Figure 5 shows an example of two sequential 

operations along with individual machines. The white token in 3p  indicates the 

operation is ongoing and has not been completed. Accordingly, the token representing 

the output parent item is not available in the WIP buffer 4p . As a result, the logical 

transition, 3t , is not enabled and cannot fire.

<<<<<<<<<<<<<<<<<<<<<Insert Figure 5 Here>>>>>>>>>>>>>>>>>

When a parent item is formed by more than one child item, the operations required 

for producing these child items are often performed simultaneously by different 

machines. In some situations, such concurrent operations are vital for activity 

synchronization, the achievement of which affects the WIP inventory, their waiting 

time, production lead time, and eventually production costs. Figure 6 shows an 

example of 2 parallel operations with individual machines. The operation performed 

by the machine (represented by 2p ) has been completed, indicated by the tokens in 

2p  and 4p  (a WIP buffer). Since the operation performed by the other machine 

(represented by 7p ) is ongoing, which is indicated by the white dot in 6p , the token 

representing the corresponding output item has not been created in the WIP buffer 

(represented by 8p ). As a result, the logical transition, 5t , is not enabled. Upon the 

completion of the operation performed by 7p , 5t fires with the presence of three 

tokens in 4p , 8p  and 9p , respectively. In RMSs, such synchronization may be 
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achieved through the selection of proper machines, production processes and the use 

of different scheduling policies.

<<<<<<<<<<<<<<<<<<<<<Insert Figure 6 Here>>>>>>>>>>>>>>>>>>

(ii) Operations with shared machines

Figure 7 shows the situations, where operations are required to be performed by 

common machines. In Figure 7(a), along with others, two operations, represented by 

2t  and 1it + , are for producing a same parent item, represented by the token in the 

buffer place 1jp + . Since both 2t  and 1it +  require 4p  representing the shared machine, 

a conflict may occur if there is a token in it. To solve such conflicts, the common 

approach proposed by most researchers is to assign priorities to transitions (Bowden, 

2000). In this work, we follow the common approach and assign different priority 

numbers (1, 2, …, n) to the competing logical transitions in connection with timed 

transitions, with one being the highest priority and n being the lowest priority. 

<<<<<<<<<<<<<<<<<<<<<Insert Figure 7 Here>>>>>>>>>>>>>>>>>>

For example, in Figure 7(a), since operation 1it +  depends on operation 2t , the 

priority number of 1t  will be 1 and that of it  will be 2. In Figure 7(b), the two 

operations represented by 2t  and 4t  are associated with two different output items, 

which are two sibling items under a parent item. Similarly, priorities are assigned to 

the corresponding logical  transitions: 1t  and 3t  to solve the potential conflicts. In this 

situation, the assignment can be made according to the cycle times of represented 

operations ( 2t  and 4t  in this case). 

(iii)Operations with alternative machines

Figure 8(a) describes a general case that an operation can be performed by 

different machines. Both the two machines, 1m  (represented by 5p ) and 2m

(represented by 6p ), can work on the same item (token 1a ⋅  residing in the buffer 

place 1p ). It takes 1m  and 2m  10 and 14 time units to complete their operations, 

respectively. To ensure that only one machine performs the operation, 4p is 

incorporated to represent the class concept of the two machines; and thus both 1m  and 

2m  are allowed to reside in 4p . The introduction of the inhibitor arcs (the two dashed 

lines from 4p  to 3t / 4t ) limits the number of tokens residing in 4p  to 1 each time. 

Page 15 of 31

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

16

Essentially, the two reconfigurable transitions ( 3t  and 4t ), the two inhibitor arcs and 

the machine class concept place form the reconfiguration mechanism. Along with the 

preferred scheduling rules, e.g., SPT, LPT, the mechanism controls the selection, and 

further reconfiguration, of a proper machine to perform the operation. The timed arc 

expression shows different time delays for the two machines to complete their 

operations.

<<<<<<<<<<<<<<<<<<<<<Insert Figure 8 Here>>>>>>>>>>>>>>>>>>

Figures 8(b) and 8(c) describe two more complicated situations, where multiple 

alternative machines are shared by more than one operation. When there is a token in 

4p  in both models, conflicts may occur. Similarly, priority numbers are assigned to 

the competing logical transitions to resolve conflicts. In Figure 8(b), priority numbers 

are assigned to 1t  and it , with a higher number to 1t  and a lower number to it . The 

reason for this is that the operation associated with it  depends on the one associated 

with 1t . In Figure 8(c), priority numbers are assigned to 1t  and 5t . The priority 

assignment in this condition can be determined with consideration of the average cycle 

times associated with the two machines. Further, in conjunction with the preferred 

scheduling rules, the reconfiguration mechanism in each model controls the 

reconfiguration of machines.   

5. APPLICATION CASE

The proposed modeling formalism has been tested in a company that manufactures 

a high variety of individualized vibration motors for mobile phones. Based on 

similarities in design and manufacturing, the company has classified the motor 

variants into several families. Variations exist in the production processes due to the 

many differences in design specifications of existing motors and those of new ones to 

be manufactured. Accordingly, the machines (including the necessary tools, fixtures 

and setups) on the shop floor have to be frequently reconfigured so as to form proper 

operations and production processes while using the existing manufacturing resources. 

5.1 Model construction

For illustrative simplicity, modeling an RMS of one motor family is described. 

Figure 9 shows the common product structure of the motor family, where three major 

assemblies are frameassy (fassy), bracketassy (bassy) and armartureassy (aassy). Each 

is formed by several manufactured parts and/or purchased components. The weight 
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and rubber holder are optional purchased components and may not be included in all 

motor variants at the same time. To fulfill diverse individual customer requirements, 

each of the above item families has a number of variations. 

<<<<<<<<<<<<<<<<<<<<<Insert Figure 9 Here>>>>>>>>>>>>>>>>>>

The reconfigurable manufacturing system includes 2 caulking machines, 1 

inserting machine, 1 fusing machine, 2 stamping machines, 2 injection machines, 1 

multifunctional machine, 2 pressing machines, 1 workbench, and several buffers. 

Table 1 shows the machines, the associated operations (described in general terms)

and the corresponding output parts/WIP/assemblies. In spite of the variations in 

production processes of motor variants, a generic routing underpinning the process 

platform for manufacturing the motor family has been identified. Each specific 

production process in relation to a motor variant starts from the manufacturing of ba 

(bracket a), bb (bracket b), tl (terminal), f (frame), and c (coil) and goes through a 

number of manufacturing/assembly operations for producing the three major 

assemblies, further abassy (WIP of aassy + bassy) and mainbody (WIP of abassy + 

fassy) and ends at the final assembly of motors. The processes of individual motor 

variants differ from one another in the specific machines, operations, cycle times, and 

operations sequences. 

<<<<<<<<<<<<<<<<<<<<<Insert Table 1 Here>>>>>>>>>>>>>>>>>>

By referring to the generic routing of the motor family, the system model, as 

shown in Figure 10, has been constructed using the proposed formalism. Table 2

shows the places, the represented system elements and the corresponding tokens. 

<<<<<<<<<<<<<<<<<<<<Insert Figure 10 Here>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<<Insert Table 2 Here>>>>>>>>>>>>>>>>>>

For illustrative simplicity without loss of generality, the tokens shown in Table 2

are not exhaustive. The colored tokens residing in buffer places are defined based on

the corresponding items in each family. For example, in the raw material buffer, 1p , 

the tokens, 1ba1 ⋅ , 1ba2 ⋅  and 1ba3 ⋅ , are defined to represent the raw materials of 3 

bracket a variants: 1ba , 2ba and 3ba ; the tokens, 1bb1 ⋅ , 1bb2 ⋅  and 1bb3 ⋅ , the raw 

materials of 3 bracket b variants: 1bb , 2bb  and 3bb ; and the tokens, 1tl1 ⋅ , 1tl2 ⋅  and 

1tl3 ⋅ , the raw materials of three terminal variants: 1tl , 2tl  and 3tl . The tokens in 

machine places, e.g., 3p , are specified according to the machine names and 

capabilities, the types of materials that the machines can work on, the tools, fixtures 
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and setups in relation to the operations to be performed. The tokens in places 

representing “machine working on material items” are defined based on the specific 

attribute data pertaining to the output parts/WIP/assemblies. For example, the tokens 

in 2p  (multifunctional machine working on coil raw materials) are defined using the 

specific data describing the output coil variants: 1c , 2c  and 3c .

The timed and untimed arc expressions are defined by taking into account 

constraints associated with machine capabilities and the company’s past production 

practice. The time delays in timed arc expressions are determined according to the 

cycle times involved in the process platform of the motor family. The timed arc 

expressions specify the possible machines for processing the given material items. 

Also specified are the cycle times that the machines may take to complete the relevant 

operations. 

For instance, ( ) ( ) ( )4.2@cw1c5.1@cw1c2@cw1c 332211 +→∧⋅∨+→∧⋅∨+→∧⋅ , of arc, 

( )21 p,t , specifies that w  (the multifunctional machine) can work on the raw materials 

of the three coil variants; and, it takes 2 hours, 1.5 hours and 2.4 hours to complete the 

relevant operations. With the presence of colored tokens 1c1 ⋅  and  w , the logical 

transition, 1t , fires immediately. However, the timed transition, 6t , will fire 2 hours 

later after the firing of 1t . The untimed arc expressions are defined to specify the input 

and output of transitions. For example, the arc expression, 321 tltltl ∨∨ , of the output 

arc, ( )117 p,t , of the timed transition, 7t , shows the three possible output terminal 

variants: 1tl , 2tl  and 3tl .  

Both the inserting machine ( 24p ) and the fusing machine ( 25p ) can perform the 

corresponding assembly operations to form aassy and abassy. To accommodate the 

reconfiguration, a machine class concept place ( 23p ), two reconfigurable transitions 

( 18t  and 19t ), and two inhibitor arcs ( ( )1823 t,p  and ( )1923 t,p ) are defined. The 

determination of machines is based on time delays in the timed arc expressions and the 

preferred schedule policies.

5.2 Model analysis

After construction, the model is analyzed to check (1) whether or not it is correct; 

and (2) whether or not it logically represents the system operations. Jensen (1995) 

introduces several methods to verify models with respect to dynamic properties, e.g., 
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boundedness. Among these, P-invariant analysis is of particular interest to most 

researchers due to its easy-understandability and implementation, which we adopt in 

this work. Several P-invariants can be identified in the system model in Figure 10. The 

total number of busy machines and idle machines gives a P-invariant. In other words, 

in any system state, the total number of tokens appearing in specific machine places, 

machine class concept places and machine working on material item places is always 

the same. Another P-invariant relates to the material items in buffers and the items 

being processed by machines. This P-invariant is obtained through mapping the items 

being processed to the corresponding raw material items. 

Deadlock and conflicts have a major impact on the logical operations of system 

models (Jiang et al., 1999). Wang (1996) describes different types of conflicts that 

may occur in a system model. In conjunction with the priority numbers assigned to the 

competing logical transitions, the definition of colored tokens and arc expressions 

have solved the possible conflicts in the model in Figure 10. Wang and Wu (1998) 

generalize a Deadlock Detection algorithm (DDA) based on the work of D’Souza 

(1994) and David and Alla (1992) for deadlock analysis. By applying their DDA 

procedure to the system model in Figure 10, a feasible firing sequence is obtained, as 

shown in Figure 11. It leads the searching of DDA to reach the goal state, 

( )126 m,0,0,0,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,b,0,0,0,0,0,0,s'2,0,i'2,0,0,w,0,0M = , 

from the initial state,









+

+++⋅+⋅+⋅+⋅+⋅
=

0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,b,0
,mgsfcmt,0,0,0,0,s'2,0,i'2,0,0,w,0,1f1tl1bb1ba1c

M
21

111111111
0 . Thus, 

we conclude that the system model is deadlock-free. 

<<<<<<<<<<<<<<<<<<<<Insert Figure 11 Here>>>>>>>>>>>>>>>>>>

5.3 Application results

The production performance considered in the application case is the makespan. 

An optimal firing sequence (with respect to the minimum accumulated processing 

time) of transitions in the system model in Figure 10 results the determination of 

proper machines for given products. In the mean time, it provides the schedule of the 

machines for producing products while leading to nearly minimum makespan. In the 

application, we have modified the PN-based heuristic search method proposed by Lee 

and DiCesare (1994) in conjunction with SPT for finding the near optimal firing 

sequence. The firing sequence for a specific motor variant, 1m , has obtained, as shown 
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in Table 3. In the table, firing time is the model time that a transition fires. The 

machines along with the corresponding schedule determined by the firing sequence 

are shown in the Gantt chart in Figure 12.  The application also indicates that different 

scheduling rules generate different schedules. This provides companies with greater

flexibility in the sense that they can incorporate different scheduling rules that are 

appropriate in their particular manufacturing environments. 

<<<<<<<<<<<<<<<<<<<<<Insert Table 3 Here>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Insert Figure 12 Here>>>>>>>>>>>>>>>>>>

6. CONCLUSIONS

Production requirements in terms of capacities and capabilities vary from time to 

time with the diverse array of individualized products in small quantities. RMSs have 

been accepted by both academia and industry alike as a promising means of providing 

companies with the required capacities and capabilities, when required. One of the 

major concerns in RMSs is the quick reconfiguration of existing manufacturing 

resources in response to different production requirements of end-products while 

considering constraints and production performance. Recognizing the importance of 

dynamic modeling and visualization in decision making support in system 

reconfiguration and the lack of research, we proposed to model RMSs with focus on 

the process of reconfiguring manufacturing resources based on PN techniques. 

The fundamental issues in RMSs have raised several challenges in modeling 

RMSs. They include variety handling, production variation accommodation, machine 

selection, and constraint satisfaction. To meet the modeling challenges, we introduced

a new formalism based on CTPNs. Variety handling is accomplished by attaching  

specific data to tokens, which are used to represent various objects. A mechanism 

including reconfigurable transitions, inhibitor arcs and machine class concept places 

are defined to accommodate production changeovers. In conjunction with colored 

tokens, timing is introduced to address the selection of proper machines and constraint 

satisfaction. The results of application case have proven the potential of the proposed 

formalism to model RMSs.

While the proposed formalism is able to provide a starting point for RMS 

modeling, it does not consider machine breakdowns. This, in turn, provides an

opportunity to extend this study. In future research, a more comprehensive modeling 

formalism may be developed to capture machine breakdowns and the corresponding
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impact on the system models to be constructed. The resulting models can be expected 

to reflect real situations more closely by taking into account machine availability. In 

addition, further research can be made to study the impact of different timing concepts, 

e.g., time representation, time generation, in conjunction with the development of 

extended formalisms on the final results to be obtained.

Process platforms have been recognized as being able to provide companies with 

well-structured mechanisms to generate potential production processes for diverse 

products while eliminating unnecessary production variations (Zhang, 2007). Using

such processes, companies are expected to be able to determine optimal configurations 

to be used on the shop floor. In this respect, another direction of further research may 

consider the integration of process platforms and modeling formalism, from which 

system models can be generated automatically. The ultimate goal is to achieve 

production automation with respect to production process planning and system 

reconfiguration, towards which this work has contributed.
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Figure 1: A PN model
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Figure 2: Graphical formalism of colored timed Petri nets
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Figure 3: Modeling RMSs using CTPN-based formalism
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Figure 4: Modeling operations in RMSs
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Figure 9: The common product structure of the motor family
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( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,b,0,mgsfcmt,0,0,0,0,s'2,0,i,ba,0,0,c,1f1tl1bbM 211111111112 ++++⋅+⋅+⋅=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,b,0,mgsfcmt,0,0,0,0,s'2,bb,0,ba,0,0,c,1f1tlM 211111111113 ++++⋅+⋅=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,b,0,mgsfcmt,0,0,0,f,s,bb,0,ba,0,0,c,1tlM 211111111114 ++++⋅=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,b,0,mgsfcmt,0,0,c,f,s,bb,0,ba,0,w,0,1tlM 211111111115 ++++⋅=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,b,0,mgsfcmt,0,0,c,f,s,bb,0,ba,tl,0,0,0M 211111111116 ++++=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,0,ca,mgsf,0,0,0,f,s,bb,0,ba,tl,0,0,0M 2111111117 ++=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,0,ca,mgsf,f,0,0,0,s'2,bb,0,ba,tl,0,0,0M 2111111118 ++=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,0,ca,mgsf,f,bb,0,0,s'2,0,i,ba,tl,0,0,0M 2111111119 ++=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,0,ca,mgsf,f,bbba,0,0,s'2,0,i'2,0,tl,0,0,0M 21111111110 +++=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,fa,p,0,0,ca,sf,0,bbba,0,0,s'2,0,i'2,0,tl,0,0,0M 2111111111 ++=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,fa,p,0,0,ca,sf,0,bbbatl,0,0,s'2,0,i'2,0,0,w,0,0M 2111111112 +++=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,fa,0,BA,0,ca,sf,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 21111113 +=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,ca,fa,0,BA,b,0,sf,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 21111114 +=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,in,0,0,fa,0,ca,0,p,BA,b,0,sf,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 21111115 +=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,0,in,0,fa,0,ca,0,p,BA,b,0,sf,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 21111116 +=

( )0,0,0,rhwt,0,cu'2,0,0,0,fu,0,0,aa,fa,0,0,0,p,BA,b,0,0,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 2111117 +=

( )0,0,0,rhwt,0,cu'2,0,0,0,0,0,fu,aa,fa,0,0,0,p,BA,b,0,0,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 2111118 +=

( )0,0,0,rhwt,0,cu'2,0,0,0,0,0,fu,aa,fa,BA,0,0,p'2,0,b,0,0,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 2111119 +=

( )0,0,0,rhwt,0,cu'2,0,0,aa,0,in,fu,0,fa,BA,0,0,p'2,0,b,0,0,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 2111120 +=

( )0,0,0,rhwt,0,cu'2,0,aaba,0,0,in,0,0,fa,0,0,0,p'2,0,b,0,0,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 211121 +=

( )0,0,0,rhwt,0,cu'2,aaba,0,0,fu,in,0,0,fa,0,0,0,p'2,0,b,0,0,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 211122 +=

( )0,0,0,rhwt,mb,cu,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,b,0,0,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 21123 +=

( )0,0,mb,rhwt,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,b,0,0,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 12124 +=

( )0,m,0,0,0,cu,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,b,0,0,0,0,0,0,s'2,0,i'2,0,0,w,0,0M 125 =

( )126 m,0,0,0,0,cu'2,0,0,0,fu,in,0,0,0,0,0,0,p'2,0,b,0,0,0,0,0,0,s'2,0,i'2,0,0,w,0,0M =

Figure 11: A feasible firing sequence leading to the goal state
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Figure 10: The CTPN model of the RMS
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Figure 12: The Gantt chart suggesting machines and operations schedule
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Table 1: Machines, operations and the corresponding output items

Machines (MCs) Operations Output Parts/WIP/Assemblies

Cutting Terminal
Multifunctional MC

Winding Coil

Fabrication Bracket a
Injection MC

Fabrication Bracket b

Stamping MC Fabrication Frame

Workbench Assembly Coilassy

Inserting MC Armatureassy

Fusing MC
Assembly

Abassy (aassy+bassy)

Frameassy
Pressing MC Assembly

Bracketassy

Mainbody (abassy+fassy)
Caulking MC Assembly

Vibration motor
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Table 2: Places, represented system elements and tokens

Places System Elements Tokens

1p Raw material buffer for bracket a, bracket b, 
terminal, coil, frame 

1ba1 ⋅ , 1ba2 ⋅ , 1ba3 ⋅ , 1bb1 ⋅ , 1bb2 ⋅ , 1bb3 ⋅ ,
1tl1 ⋅ , 1tl2 ⋅ , 1tl3 ⋅ , 1c1 ⋅ , 1c2 ⋅ , 1c3 ⋅ , 1f1 ⋅ , 
1f 2 ⋅ , 1f 3 ⋅ , 1f 4 ⋅

2p Multifunctional mach processing coil raw materials 1c , 2c , 3c

3p Multifunctional machine w

4p Multifunctional mach processing terminal raw 
materials 1tl , 2tl , 3tl

5p Injection machine processing bracket a raw 
materials 1ba , 2ba , 3ba

6p Injection machine i

7p Injection machine processing bracket b raw 
materials 1bb , 2bb , 3bb

8p Stamping machine s

9p Stamping machine processing frame raw materials 1f , 2f , 3f , 4f

10p WIP buffer for coil 1c , 2c , 3c

11p WIP buffer for bracket a, bracket b and terminal 1ba , 2ba , 3ba , 1bb , 2bb , 3bb , 1tl , 2tl , 3tl

12p WIP buffer for frame 1f , 2f , 3f , 4f

13p Raw material buffer for tape, commutator, magnet, 
shaft

1t , 2t , 1cm , 2cm , 1mg , 2mg , 3mg , 1sf , 

2sf , 3sf

14p Operator assembling coilassy on workbench 1ca , 2ca , 3ca , 4ca

15p Workbench b

16p Pressing machine processing bassy 1BA , 2BA , 3BA , 4BA

17p Pressing machine p

18p Pressing machine processing frameassy 1fa , 2fa , 3fa , 4fa

19p WIP buffer for coilassy 1ca , 2ca , 3ca , 4ca

20p WIP buffer for bassy 1BA , 2BA , 3BA , 4BA

21p WIP buffer for frameassy 1fa , 2fa , 3fa , 4fa

22p Inserting (or fusing) machine processing aassy 1aa , 2aa , 3aa , 4aa

23p Class concept of inserting & fusing machines in , fu

24p Inserting machine in

25p Fusing machine fu

26p WIP buffer for aassy 1aa , 2aa , 3aa , 4aa

27p Inserting (or fusing) mach processing aassy & 
bassy 1aaba , 2aaba , 3aaba , 4aaba

28p WIP buffer for abassy 1aaba , 2aaba , 3aaba , 4aaba

29p Caulking machine cu

30p Caulking machine processing mainbodies 1mb , 2mb , 3mb , 4mb

31p Raw material buffer for weights and rubber holders 1wt , 2wt , 3wt , 4wt , 1rh , 2rh , 3rh , 4rh

32p WIP buffer for mainbodies 1mb , 2mb , 3mb , 4mb

33p Caulking machine processing motors 1m , 2m , 3m , 4m

34p End-product buffer for motors 1m , 2m , 3m , 4m
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Table 3: The firing sequence leading to the optimal reconfiguration of machines

Fired
Transitions

Firing
Time

Input
Tokens

Created
Tokens

Fired
Transitions

Firing
Time

Input
Tokens

Created
Tokens

1t 0 1c1 ⋅ , w 1c 16t 6:28 1fa 1fa , p

3t 0 1ba1 ⋅ , i 1ba 18t 6:28 in in

4t 0 1bb1 ⋅ , i 1bb 14t 6:30 1ca 1ca , b

5t 0 1f1 ⋅ , s 1f 17t 6:30 1sf , 1ca , in 1aa

6t 2’ 1c 1c , w 19t 6:30 fu fu

2t 2’ 1tl1 ⋅ , w 1tl 15t 8:12 1BA 1BA , p

11t 2’ 1c , 1t , 1cm , b 1ca 22t 10:00 1aa 1aa , in

10t 3:21 1f 1f , s 23t 10:00 1BA , 1aa , fu 1aaba

8t 4:07 1bb 1bb , i 24t 12:42 1aaba 1aaba , fu

9t 4:22 1ba 1ba , i 20t 12:42 1aaba , 1fa , cu 1mb

13t 4:22 1f , 1mg , p 1fa 21t 14:22 1mb 1mb , cu

7t 5:00 1tl 1tl , w 25t 14:22 1mb , 1wt , 2rh , cu 1m

12t 5:00 1ba , 1bb , 1tl , p 1BA 26t 16:34 1m 1m , cu
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