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ABSTRACT Perovskite semiconductors are an exciting class of materials due to their 

promising performance outputs in optoelectronic devices. To boost their efficiency further, 

researchers introduce additives during sample synthesis, such as KI. However, it is not well 

understood how KI changes the material and, often, leaves precipitants. To fully resolve the 

role of KI, a multiple microscopy techniques is applied and the electrical and chemical behavior 

of a Reference (untreated) and a KI-treated perovskite are compared. Upon correlation between 

electrical and chemical nanoimaging techniques, we discover that these local properties are 

linked to the macroscopic voltage enhancement of the KI-treated perovskite. The heterogeneity 

revealed in both the local electrical and chemical responses indicates that the additive partially 

migrates to the surface, yet surprisingly; does not deteriorate the performance locally, rather, 

the voltage response homogeneously increases. The research presented within provides a 

diagnostic methodology, which connects the nanoscale electrical and chemical properties of 

materials, relevant to other perovskites, including multi-cation and Pb-free alternatives. 
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Introduction 

Halide perovskite semiconductors are complex and promising materials to the 

optoelectronic research community, because they offer a low-cost solution for a wide variety 

of applications[1] and they exhibit excellent performance in photovoltaic (PV) devices despite 

demonstrating performance heterogeneity at the nanoscale.[2] Yet, prior to deployment into the 

PV market, various questions about the unique electrical, thermal, and structural instabilities 

must be resolved.[3] Thus far, the most stable perovskite materials that maintain a power 

conversion efficiency (η) > 20% incorporate a triple cation (Cs, FA = formamidinium, 

CH3(NH2)2
+, and MA = methylammonium, CH3NH3

+) in the A-site of the perovskite ABX3 

structure, Pb2+ in the B-site, and a mixture of halides in the X-site (typically I or Br). Despite 

the effort that has gone into tailoring the possible compositions and into engineering the 

interfaces between the active layers,[4] a further increase in performance stability is required for 

a viable solar cell device.[5] 

To address the stability challenge, scientists and engineers have recently focused on 

investigating defect passivation approaches, i.e. introducing small amounts of an additional 

species into the perovskite material either pre-, during, or post-synthesis in order to reduce the 

impact of surface defects.[6] For example, including excess amounts of PbI2 during perovskite 

formation enhances the device performance by slowing the rate of charge carrier recombination 

at the interfaces between the perovskite and charge selective contacts and reducing the halide 

vacancy concentration.[7] Coating perovskites with quaternary ammonium halides (structure: 

NR4
+X-, where R=alkyl or aryl group, and X=halide) has shown prolonged charge carrier 

lifetimes, which increases the overall open-circuit voltage (Voc) of the solar cell while also 

extending device stability to >800 hours in ambient conditions.[8] Additionally, by including a 

potassium-halide solution into the perovskite precursor, the resulting film’s interfaces and grain 

boundaries become passivated, reducing J-V curve hysteresis and extending the solar cell’s 

shelf life.[6b] Yet, this latter treatment route has also found that undesirable by-products are 
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formed,[9] even when the samples are only ever stored in a glove box environment (i.e. never 

exposed to ambient conditions, see also Figure S1 of supporting information).[10]  

Several passivation techniques[11] have led to enhanced macroscopic PV performance, 

yet, there is little direct evidence for how (i) the additional chemical species are distributed 

within the solar cell device or (ii) the resulting local electrical and chemical properties interact 

and influence one another. Thus, there is a need for correlative studies to link multiple nanoscale 

material properties.[2a, 3f, 12] In this work we use the terminology correlation to establish the 

effect of one material property (e.g. chemical) on another (such as electrical). For example, 

recently, peak force infrared microscopy was implemented to relate local mechanical and 

chemical properties of a variety of materials, including perovskite crystals.[13] Here, a link 

between perovskite surface degradation and a reduction in the mechanical modulus was found. 

Kong et al., implemented photoinduced force microscopy in conjunction with conductive 

atomic force microscopy (c-AFM) to study the structure-function relationship between two 

electronically distinct polymers.[14] They found that the semiconducting polymer is embedded 

within the insulating polymer’s aggregates. Further, our prior work implementing time-of-flight 

secondary ion mass spectroscopy (ToF-SIMS) in conjunction with Kelvin probe force 

microscopy (KPFM) connected the perovskite chemical composition with the short and long-

term voltage response in multiple halide perovskite films.[3d] Employing such techniques to 

provide a more in-depth understanding of how perovskite passivation techniques boost device 

performance at the nanoscale will be necessary to rationally fabricate the next-generation of 

halide perovskite solar cells. 

Here we present a fully experimental correlative microscopy methodology that details 

the intricate relationship between the electrical and chemical properties of triple cation halide 

perovskite solar cells. Devices containing perovskite thin films both with and without the 

potassium-halide (KI) treatment have been analyzed macroscopically for comparison. Through 

J-V measurements we show that the treated perovskite sample has a boost in the open-circuit 
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voltage (Voc) and overall performance; yet, scanning electron microscopy (SEM) reveals 

surface aggregates on the treated sample. By resolving the nanoscale voltage response using 

KPFM we find that these surface precipitants have a unique work function behavior, and 

surprisingly, do not influence the local Voc. From atomic force microscopy infrared (AFM-IR 

or nanoIR) measurements we identify and correlate the distinct work function response to the 

local chemical composition, revealing that a compound containing Br is embedded within the 

nanoscale surface aggregates. Finally, we implement 3D chemical imaging using ToF-SIMS to 

explore sub-surface chemical segregation and discover that the surface crystallites also contain 

high K concentrations, suggesting KBr as the chemical identity. Although the nanoIR and TOF-

SIMS elemental detection ranges differ, we find traces of Br and K with each chemical imaging 

techniques, respectively, as KBr is transparent with IR light. With ToF-SIMS we find that the 

aggregates only conjugate at the top surface layer (first 10s of nm), and that the perovskite thin-

film within the entire sample stack is otherwise chemically homogeneous. With these results 

we capture the infiltration pathways of the KI passivation, and while the overall passivation 

does increase PV performance macroscopically, this research reveals that additional 

optimization concerning the passivation process of both grain cores and boundaries could boost 

the solar cell power conversion efficiency further. 

 

Results and Discussion 

The perovskite samples under investigation are fabricated through a similar process as 

described in ref [6b], see also the Experimental Methods section for details. From the SEM 

images of both the Reference and KI-treated thin films, Figure 1a and b, respectively, we 

immediately discern a difference in surface morphology. While the Reference film is uniform 

and featureless, apart from the expected ~100 nm grains, the KI-treated sample shows bright, 1 

– 2 µm diameter clusters, uniformly decorating the surface. These precipitants arise over time 

(from days to weeks), even when stored in inert conditions (see Figure S1 of supporting 
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information), yet their influence on the local electrical properties is currently unclear. To 

explore the performance difference between the two samples, we fabricate full devices (see 

experimental section) and measure the macroscopic current density-voltage (J-V) curves for 

both the Reference and KI-treated devices under 1-sun illumination, provided in Figure 1c, see 

Figure S2 in the supplemental information for the forward, reverse, and dark J-V curves for 

both devices. We note that the thin FTO/glass coverslip has a higher resistance than standard 

thick glass substrates and the Spiro-OMeTAD layer used here is approximately 4× thinner than 

in state-of-the-art devices, resulting in lower device performance. The thinner hole transport 

layer was used for all the microscopy measurements in order to have higher quality KFPM 

maps and to maintain good AFM tip quality, as the perovskite/probe interaction is prone to 

artefacts. The inset displays the layer-by-layer schematic of the solar cells. As expected, the 

passivated sample has a higher macroscopic Voc and η due to the increased radiative 

recombination, detailed previously.[6b] The higher parasitic resistances that we measure in both 

of these J-V curves is caused by fabricating the devices on the cover-slip glass substrates (which 

are necessary for performing the following local electrical and chemical imaging 

measurements). 

To investigate if the macroscopic Voc can be further understood at that the nanoscale 

level, we implement KPFM. Briefly, original theorized by Lord Kelvin, KPFM measures the 

work function difference between the surface and the AFM probe (see Figure S3).[2a, 15] Upon 

illumination of a light-active material, the photovoltage is measured, and by subtracting a light 

KPFM map from a dark one, the quasi-Fermi level splitting remains, which is related to the Voc 

to the semiconductor device.[3g] Figure 2 presents KPFM under Dark and Light conditions on 

both the Reference (Figure 2a-d) and KI-treated (Figure 2e-h) half devices (without the top Au 

contact). To see the experimental setup of this and all follow experiments, see Figure S3 in the 

SI. The topography maps are consistent with the morphological features observed in the SEM 

images in Figure 1. Meanwhile, the local electrical measurements for each perovskite sample 
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display distinct voltage responses. Dark and illuminated KPFM maps on the Reference thin 

film (Figure 2b and c) reveal an expected homogeneous voltage response, as we are measuring 

along a high-mobility Sprio-OMeTAD surface, and this uniform voltage is typically ideal for 

solar cell materials.[3g] However, critically, the difference in photovoltage (ΔV, obtained from 

Light minus Dark scans), as shown by the voltage histograms plotted in Figure 2d, is only 330 

mV (map provided in Figure S4d). In contrast, for the KI-treated sample the dark and light 

KPFM images (Figure 2f and g) show that the local contact potential difference (VCPD) has more 

heterogeneity, indicating that the work function (and therefore, material) varies spatially. 

Specifically, regions with surface aggregates consistently have a lower VCPD (≈500 mV) 

compared to the, again, isopotential perovskite thin-film stack. Despite this heterogeneity of the 

KI-treated sample, the overall photovoltage difference is 900 mV, much higher than the 

Reference sample (by 570 mV). This is in qualitative agreement with the macroscopic J-V 

curves in Figure 1c, where the KI-treated device has a larger Voc than the Reference. To see the 

homogeneous surface photovoltage maps of both samples, (KFPM light minus dark), see 

supplemental materials Figure S4. Both the increased photovoltage and Voc of the KI-treated 

film are evidence of successfully passivated films, however we note that the photovoltage value 

is different than the obtained macroscopic Voc measured in Figure 1, which is due to an 

uncalibrated KPFM setup. In order to quantitatively compare these two amounts, we would 

need to account for the illumination area and intensity, charge extraction, and light absorption, 

detailed in refs [3e, 3g]; such calibration is beyond the scope of this work.  

The nature of the low VCPD regions in the KI-treated perovskite must originate from the 

passivation process[10] and are likely a different material, due to the evident 500 mV difference 

in VCPD. To determine the nature of these features further, we implement nano-IR (or AFM-

IR)[16], based on an AFM, which detects the chemical vibrational response with nanoscale 

spatial resolution[17]. During mapping, the intensity of a specified IR wavenumber is measured 

at each spatial coordinate (x,y) while simultaneously acquiring the surface topography. In 
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Figure 3a-h we display the resultant topography and IR absorption maps of the Reference and 

KI-treated samples. To determine the IR peak(s) of interest, prior to imaging, a broadband IR 

spectra is collected by sweeping the wavenumber of a quantum cascade laser chip, see Figure 

3i. The lasers used in this experiment do not emit at all wavenumbers, therefore, there are 

regions where the counts are equal to zero on the graph, see Experimental Section for more 

details. We have selected wavenumbers = 1147 cm-1 and 1355 cm-1 for imaging (see supporting 

information Figure S5, S6, and S7 for additional IR absorption maps), because while both the 

Reference and KI-treated samples contain a 1355 cm-1 peak, only the KI-treated perovskite 

exhibits the 1147 cm-1 IR absorption peak. The 1355 cm-1 peak designates the chemical 

compound cyclohexane (C6H12, likely linked to the Spiro-OMeTAD top layer) and the 1147 

cm-1 peak is likely either: (i) Bromoform (CHBr3) or (ii) bromopropyne (C3H3Br), based on the 

National Institute of Standards and Technology Chemistry WebBook Database.[18] From Figure 

3a,e and c,g we find that the Reference perovskite has between 10-20 counts (equivalent to the 

noise level) in the 1147 cm-1 image, and the KI-treated film exhibits a strong, highly localized 

1147 cm-1 vibration. Upon comparing the nano-IR map to its corresponding topography map, 

we find that the large 1147 cm-1 counts arise from the distinct surface aggregate sites. The 1355 

cm-1 peak is detected in both the Reference and KI-treated films (Figure 3f and h). This 

vibrational mode has a uniform distribution in the Reference sample, while in the KI-treated 

sample, the Fouier-transform infrared spectroscopy (FTIR) signal is clearly anti-correlated to 

the surface aggregates. Note, the 1147 and 1355 cm-1 maps are purposely acquired in different 

(and representative) regions of the same sample, because both the IR laser and the AFM probe 

(which is in contact mode) can degrade the perovskite thin-film surface, see the supporting 

information Figure S7 for a study where we scanned the same region continuously. From Figure 

S7 we also demonstrate the excellent spatial resolution of this imaging technique, by resolving 

fine details of the surface aggregates. We also compare the nanoIR spectra to bulk FTIR 

measurements for both samples (see Figure S8), and find that many of the largest peaks in the 



     

9 

 

bulk FTIR spectra are also visible in the nanoscale spectra (e.g. 1000-1100 cm-1 and peaks in 

the 1300 cm-1 range).  However, the 1147 cm-1 peak is not detected, likely due to its localization 

at the surface. 

While nano-IR is extremely proficient at identifying chemical species at the nanoscale, 

it is a surface limited technique, reaching depths proportional to the diameter of the cantilever 

(here, 20 – 50 nm). To further understand the full effect of the KI passivation treatment, we 

now turn to time-of-flight secondary ion mass spectroscopy (ToF-SIMS), based in a scanning 

electron microscope (SEM).[19] Here, a Ga+ ion beam bombards the perovskite films, 

systematically etching away the top few nanometers of the material with each pass. This 

approach enables chemical identification in 3D with an x,y spatial resolution of ~100 nm, 

therefore, compositional variations on the grain-to-grain length scale cannot be resolved. In 

Figure 4 we show depth profiles obtained from TOF-SIMS (for additional depth profiles of 

each sample, see supporting information, Figure S9). As expected, the Reference sample, 

Figure 4a, has no K within the entire layer stack. However, for the KI-treated perovskite there 

is initially a small K peak at the top surface of the film, Figure 4b, which then decays at the 

start of the Spiro layer, and ultimately maximizes in the perovskite absorbing layer (~150 – 250 

seconds). This is evidence that some excess K has migrated to the top surface of the film, while 

entirely bypassing the Spiro layer between the perovskite material and the surface. Note, the 

layer assignments above the depth profiles in Figure 4 are approximate, and based on the onset 

of the elements that are expected to be present within the layer. Besides the presences of the K 

element, the depth profiles of both thin films are very similar. The Br-1/Br-2 and Spiro-1/Spiro-

2 curves refer to different isotopes of the Br/Spiro compounds. 

We acquired TOF-SIMS x,y images of the local elemental distribution with a spatial 

resolution of ~100 nm. The 3D TOF-SIMS data displaying the local K concentration for the 

KI-treated perovskite are presented in Figure 5 (for multiple 3D TOF-SIMS maps and the 

distribution of iodine for both the Reference and KI-treated sample, see Figure S10 and S11 
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in the supporting information). Figure 5a and b display the top-most layer of this perovskite 

thin-film stack, where a heterogeneous K distribution is revealed. The dimensions of the K 

features on the top surface of the entire sample stack, (yellow patches in Figure 5a), in the TOF-

SIMS data are nearly identical to those identified with SEM, AFM, and nano-IR, indicating 

strong evidence of the passivation treatment inducing chemical migration. The diffusion of K 

to the surface signifies that there is excess K ions which gets pushed out of the perovskite layer, 

which may be why performance degrades with larger K inclusion, as shown in ref 17. 

Surprisingly, there is negligible K found in the Spiro-OMeTAD layer, while the chemical 

distribution within the perovskite itself is uniform (Figure 5d and e), yet there is some slight K 

variation at both the HTM/perovskite and perovskite/ETM interfaces (panel 5c and 5f, 

respectively). All other elemental distributions of the thin film layer stack are homogeneous 

throughout the perovskite film, at least within the spatial resolution of our measurements. 

Interestingly, there is no signature of Br at the surface of the KI-treated perovskite (see 

supporting video S1) in TOF-SIMS, as it has been suggested on our nanoIR measurements 

presented in Figure 3. While, on the nanoIR setup, there is no peak assignable to K or K-

containing compounds in the FTIR spectra. This may be due to the difference in sensitivity 

between two detection setups, as well as the detection windows. For example, if the aggregates 

contain the compound KBr, this would not show up in the nanoIR data, as KBr is a common 

material used as infrared transmission windows.[20]    

The microscopy experiments presented here deliver an insightful characterization 

platform, producing a complete narrative for the inter-relations between the electrical and 

chemical properties of optoelectronic materials at the nanoscale. These measurements are 

adaptable for a variety of optoelectronic systems beyond perovskites, such as other complex 

tandem solar cells,[21] and organic light-emitting diodes.[22] Such datasets on halide perovskite 

materials, coupled with other local material property experiments such as EDX,[10] nano X-ray 

diffraction[23] or electron diffraction imaging,[24] would extend correlative microscopy, linking 
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structural-chemical-electrical properties, a ‘holy-grail’ approach that would unlock a deep 

understanding of the performance heterogeneities that currently limit the η in halide 

perovskites.[2b] 

Conclusion 

We provided experimental evidence for how a state-of-the-art KI defect passivation 

treatment, known to macroscopically boost Voc of perovskite solar cells, infiltrates and is 

distributed within a perovskite layer by implementing high spatial resolution mapping 

techniques. All data are compared with a Reference sample that has not been subjected to the 

passivation processing step. With KPFM we showed how the local voltage measurements 

display a heterogeneous work function for the KI-treated sample, with variations in work 

function up to 500 mV. However, despite this variation, the surface photovoltage distribution 

was homogenous, evidenced by performing illuminated-KPFM, indicating the precipitants do 

not locally harm or boost performance. Surface chemical properties at the nanoscale, realized 

with nano-IR experiments, revealed that the surface aggregates on the KI-treated sample were 

assigned to wavenumber 1147 cm-1
, which is linked to a Br-containing chemical. For 3D 

elemental mapping, we applied ToF-SIMS and found that while there is heterogeneity in the K 

concentration at the sample surface, the distribution of K within the perovskite layer is uniform. 

These findings are an indicator that excess KBr has migrated out of the perovskite layer 

naturally over time towards the surface of the sample stack. By using multi-property studies on 

this by-product, we determine that a slightly smaller concentration of the KI additive treatment 

might boost the device performance. This alteration of the processing would enable a uniform 

surface work function, while also maintaining the benefits of a higher Voc photovoltaic device 

due to passivated interfaces (e.g. grain boundaries) within the perovskite layer.  

 

Experimental Section  
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Thin film and solar cell fabrication: All the organic cation salts were purchased from Dyesol, 

the lead compounds for TCI Chemicals, and CsI and KI from Alfa Aesar. Spiro-OMeTAD was 

purchased from Borun Chemicals and used as received. Unless otherwise stated, all other 

materials were purchased from Sigma-Aldrich.  

The triple cation–based perovskite [i.e. Cs0.06FA0.79MA0.15Pb(I0.85Br0.15)3] was prepared 

by dissolving PbI2 (1.2 M), FAI (1.11 M), MABr (0.21 M), and PbBr2 (0.21 M) in a mixture of 

anhydrous N, N′-dimethylformamide/dimethyl sulfoxide (DMF/DMSO) (4:1, volume ratios), 

followed by the addition of 5% (v/v) CsI stock solute (1.5 M in DMSO). To fabricate the 

potassium passivated triple cation perovskite, we added 10% (v/v) from KI stock solution (1.5M 

in DMF/DMSO; 4:1, volume ratios) to the triple cation perovskite solution. We then spin-

coated the perovskite solutions using a two-step program at 2000 and 4000 rpm for 10 and 35 

s, respectively, and dripping 110 μl of chlorobenzene after 30 s. We then annealed the films at 

100°C for one hour. All the film preparations were performed in a nitrogen-filled glove box and 

the same procedures for substrate preparation and deposition of both the TiO2 and Spiro-

OMeTAD layers is detailed in our previous work.[6b] For the full devices, thermally evaporated 

80 nm of Au at an evaporation rate of 0.05 nm s-1 was deposited onto the surface. 

Current-voltage photovoltaic characterization: Current-voltage characteristics were recorded 

at the University of Cambridge, prior to being sent to the University of Maryland for 

microscopic characterization (to avoid air exposure, samples were couriered and stored in 

nitrogen and Ar atmospheres, respectively). An external potential bias was applied to the cell 

while recording the generated photocurrent with a digital source meter (model 2400, Keithley 

Instruments). The light source was a 450-W xenon lamp (Oriel) equipped with a Schott K113 

Tempax sunlight filter (Praezisions Glas & Optik GmbH) to match the emission spectrum of 

the lamp to the AM1.5G standard. Before each measurement, the exact light intensity was 

determined using a calibrated Si reference diode equipped with an infrared cutoff filter (KG-3, 

Schott). All measurements were conducted using a non-reflective metal aperture of 0.105 cm2 
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to define the active area of the device and avoid light scattering through the sides. The incident 

light intensity was adjusted to 1000 W m-2 in accordance with standard AM 1.5 reporting 

conditions. The voltage scan rate was 10 mV s-1 and no device preconditioning, such as light 

soaking or extended forward voltage biasing in the dark, was applied before starting the 

measurement. 

Scanning electron microscopy images: We used a Tescan GAIA3 FIB/SEM instrument to 

acquire the images displayed in Figure 1. The acceleration voltage = 5 kV, at a magnification 

of ≈10 kx was used to acquire images in SE mode of both the Reference and KI-treated samples 

with a working distance of 5.15 and 5.68 mm, respectively.  

Kelvin probe force microscopy: The perovskite samples were measured using an Asylum 

Cypher, where the bottom FTO contact was grounded with respect to the Pt-coated AFM probe. 

The tip scanned the surface of the 50-nm thick Spiro-OMeTAD hole-transport material. We 

implemented heterodyne KPFM imaging mode[3e, 25] and during the illuminated KPFM 

measurements a 532 nm laser with a 1-sun photon flux density illuminated through the 

glass/FTO side of the sample. That is, on the opposite side of the scanning AFM tip, thus, 

avoiding shadowing effects from the probe. Note: the power stability of the laser used in these 

measurements = ±0.5%. A flow a dry-air was coupled into the AFM chamber to keep the 

humidity level <10% during the measurements.  

Nano-IR measurements: Nanoscale chemical measurements were performed at the Center of 

Nanophase Materials Science at Oak Ridge National Lab in Oak Ridge, TN, USA. We acquired 

the local nano-IR spectra and chemical maps with the NanoIR2-s Anasys Instruments 

microscope in contact mode. An initial ‘array’ of nano-IR spectra is taken for each sample to 

determine the presence of specific IR absorption peaks and whether these peaks varied as a 

function of location on the sample surface. Subsequently, IR absorption peaks that were found 

to be relatively strong or varied as a function of location across the sample surface in the array 

were chemically mapped. Any vibration changes are detected by the scanning probe tip, which 
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is scanning the 50-nm Spiro-OMeTAD surface of the entire perovskite sample stack. The IR 

laser incident on the sample surface has a spot size, on average, of 62 µm. The instrument is 

equipped with a quantum cascade laser that is tunable for the wavenumbers ranges: 920-1174 

cm-1, 1310-1411 cm-1, and 1505-1863 cm-1.  All measurements were performed in ambient 

conditions. Nano-IR AFM probes (Anasys Instruments) are Au coated with a nominal spring 

constant of 3 N/m and radius of curvature of > 25 nm. The probe diameter, which is proportional 

to the probe depth of the nano-IR measurement, was between 20-50 nm. Figure 3, S5 and S6 

were acquired for 15 min/map, and Figure S7 for 9 min/map.  

ToF-SIMS characterization: Using the same Tescan GAIA3 SEM/FIB setup as describe above, 

we bombarded the perovskite samples with a focused Ga+ ion beam at 20 keV and with a current 

of 1nA, which served as both the primary and sputtering beam. Both the positive and negative 

secondary ions were generated by ionizing the sample with the Ga+ beam. The ToF-SIMS 

signals were detected by a mass spectrometer. During the measurements, the vacuum level was 

kept below 10-4 Torr at all times. Three different locations on each perovskite sample were 

measured for statistical purposes. Areas of 20 × 20 µm2 were sputtered away for secondary ion 

determination, while 15 × 15 µm2 central regions were analyzed to avoid any edge effect. The 

lateral spatial resolution is 100 nm, while the depth resolution is <10 nm.  

 

Supporting Information  
Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. Macroscopic characterization of perovskite thin films and devices. SEM image of (a) 

the Reference, triple cation/mixed halide and (b) the KI-treated thin films with the same 

perovskite (CsFAMA)Pb(I0.85Br0.15)3 composition. (c) Reverse bias macroscopic light J-V 

curves of the Reference (black) and KI-treated (blue) perovskite solar cells. Inset: layer-by-

layer schematic of perovskite devices; out of scale for clarity. Figures-of-merit for the reference 

sample: Voc = 1.05 V, Jsc = 18.43 mA/cm2, FF = 48%, and η = 9.3% (in reverse bias); KI-treated 

sample: Voc = 1.13 V, Jsc = 19.46 mA/cm2, FF = 50%, and η =11.0% (in reverse bias). 

 

 

 

Figure 2. Local voltage response in perovskites. For the Reference perovskite device: (a) 5 × 5 

µm2 topography and (b,c) Kelvin probe force microscopy (KPFM) images in both dark and 

illuminated conditions, respectively. (d) Voltage histograms for the KPFM maps in (b,c). For 

the KI-treated sample: (e) Topography and (f,g) dark and light KPFM images, respectively, and 

(h) the associated voltage histograms for both KPFM maps. Illumination conditions: 532 nm 

laser under 1-sun illumination, spot size = 500 µm in diameter. The ΔV in the histograms 
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denotes the average value of the difference between the light and dark KPFM maps. The 

magnitude of ΔV is related to the macroscopic open-circuit voltage (Voc) of the perovskite.  

 

 

 

 

Figure 3. Resolving the chemical composition distribution of KI-passivated perovskites. (a-d) 

Topography map and (e-h) simultaneously acquired nano-IR measurements on Reference and 

KI-treated perovskite samples. In (e,g) it is evident that the wavenumber 1147 cm-1 has a 

negligible presence in the Reference samples, meanwhile, it is directly related to the surface 

aggregates (faintly observed in the above topography map). Wavenumber 1355 cm-1 has a 

higher abundance in both samples and is anti-correlated to the surface aggregates in the KI-

treated perovskite film. (i) Nano-FTIR spectra acquired on the Reference (black) and KI-treated 

(blue) samples. The blue spectrum shown in (i) was acquired while the probe was hovering 

above a surface aggregate for the KI-sample. 

 

 

 

 

 

 
Figure 4. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) depth profiles. The 

average elemental distribution for the (a) Reference and (b) KI-treated perovskite thin films as 

a function of depth within a 15 × 15 × 1 µm3 excavated volume. Note that each sample’s depth 

profiles are individually normalized relative to the ion (+ or -) with the highest number of 

counts. For example, because Ti+ has the highest detected counts, and all other + ions are 
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normalized with respect to Ti+. Further, the counts for K on the Reference samples are within 

the noise level of the TOF-SIMS measurement.  

 

 

 

 

Figure 5. Distribution of K as a function of depth within the KI-treated perovskite sample. (a) 

TOF-SIMS map of entire sample stack. Note the heterogeneous distribution of K (yellow 

patches) at the top surface of thin-film, which are directly related to the surface aggregates 

measured by KPFM and nano-IR measurements. (b) TOF-SIMS map acquired a few 

nanometers below the top surface, where the K concentration wanes. (c) TOF-SIMS map at the 

top surface of the perovskite layer, where a semi-uniform K distribution followed by (d,e) 

higher uniformity deeper into the perovskite layer (here, d and e, represent the upper and lower 

part of the perovskite layer, respectively). (f) TOF-SIMS map showing K concentration at the 

interface between the perovskite and TiO2 layers, with slight heterogeneities. Note: the z-axis 

displayed here is approximate, as the sputtering speed is highly material dependent. 
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Figure S1. (a) Topography, dark- and light-Kelvin probe force microscopy (KPFM) 

measurements on a fresh KI-treated sample which was (b) gradually exposed to moisture in 

humidity-controlled AFM chamber. The green and blue lines on the real-time humidity data 

indicate when the KPFM measurements of (a) and (b) were performed, respectively. Surface 

features begin to precipitate with humidity exposure. (c) Topography, dark- and light-KPFM 

measurements on an identical KI-treated sample which was stored in Ar atmosphere glove box 

for one week and subsequently measured (bottom row). Surface aggregates also develop with 

time, without any external inducers (e.g. moisture, temperature or light). Orange region on the 
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real-time humidity data for this sample indicates when the KPFM measurements shown here 

were acquired. Illumination light source used: 532 nm with a 1-sun equivalent photon flux.  

 

 

 

 
Figure S2. Light (AM1.5G 1-sun illumination) and Dark J-V curves for (a) Reference and (b) 

KI-treated solar cell devices. For the entire solar cell stack, see Figure 1 of the main manuscript. 

For the reference sample: Voc = 1.04 V, Jsc = 18.35 mA/cm2, FF = 44 %, and η = 8.4 % (in 

reverse bias); KI-treated sample: Voc = 1.09 V, Jsc = 18.46 mA/cm2, FF = 57 %, and η =11.4 % 

(in reverse bias). 

 

 

 

 

 

 

 

 

 

 

 
Figure S3. Cross-sectional schematic of the three different microscopy techniques 

implemented within this manuscript (a) KPFM, (b) nano-IR, and (c) TOF-SIMS. 
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Figure S4. KPFM measurements on the (a-d) Reference and (e-h) KI-treated perovskite half 

devices. (a) Topography and simultaneous (b) Dark and (c) Light KPFM measurements of the 

Reference sample. (d) The surface photovoltage (SPV) of the KPFM measurements, which is 

the Light KPFM map subtracted by the Dark KPFM map. (e) Topography and (f) Dark and (g) 

Light KPFM maps of the KI-treated sample. In (h) the SPV map is displayed. The average SPV 

value for the entire map is indicated for both samples. 

 

 

 

 

 

 
Figure S5. (a) Topography and simultaneous (b) nano-IR at 1147 cm-1 acquired on another 

location of the KI-treated sample. 
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Figure S6. (a-c) Topography and simultaneous (d-f) nano-IR at 1147 cm-1 acquired on multiple 

regions of a Reference sample. 

 

 

 

 

 

 

 
Figure S7. (a) Initial topography scan and simultaneously acquired (b) nano-IR map. (c) and 

(d) are the subsequent nano-IR images, demonstrating how with continuous IR exposure 

degrades the sample surface, the duration of each nanoIR measurement is ≈9 min for a total 

exposure time of 27 min.  
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Figure S8. Normalized bulk FTIR vs nanoIR (dashed) spectra. Macroscopic FTIR 

measurements were performed on perovskite films that were drop casted on a KBr transparent 

KBr window. Data from 1175 – 1309 cm-1 and 1411 – 1503 cm-1 was removed to easily 

compare between the two different techniques. The surface aggregate feature at 1147 cm-1 is 

not present in the bulk FTIR spectrum due to the lack of surface sensitivity in the bulk FTIR 

measurement. 

 

 

 

 
Figure S9. Time of flight-secondary ion mass spectroscopy depth profiles in multiple locations 

for the (a) Reference and (b) KI-treated thin film samples. No normalization was performed. 
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Figure S10. (a-c) Time of flight-secondary ion mass spectroscopy 3D maps of the distribution 

of the K element in multiple locations for the KI-treated perovskite sample. 

 

 

 

 

 

 

 
Figure S11. Time of flight-secondary ion mass spectroscopy 3D maps of the distribution of 

iodine in multiple locations for the (a) Reference and (b) KI-treated perovskite samples. The 

3D map in the bottom row displays the representative uniform distribution of iodine within the 

perovskite layer for both samples. 
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