1,004 research outputs found

    Odd Chern-Simons Theory, Lie Algebra Cohomology and Characteristic Classes

    Full text link
    We investigate the generic 3D topological field theory within AKSZ-BV framework. We use the Batalin-Vilkovisky (BV) formalism to construct explicitly cocycles of the Lie algebra of formal Hamiltonian vector fields and we argue that the perturbative partition function gives rise to secondary characteristic classes. We investigate a toy model which is an odd analogue of Chern-Simons theory, and we give some explicit computation of two point functions and show that its perturbation theory is identical to the Chern-Simons theory. We give concrete example of the homomorphism taking Lie algebra cocycles to Q-characteristic classes, and we reinterpreted the Rozansky-Witten model in this light.Comment: 52 page

    Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory

    Full text link
    On the basis of a thorough discussion of the Batalin-Vilkovisky formalism for classical field theory presented in our previous publication, we construct in this paper the Batalin-Vilkovisky complex in perturbatively renormalized quantum field theory. The crucial technical ingredient is a proof that the renormalized time-ordered product is equivalent to the pointwise product of classical field theory. The renormalized Batalin-Vilkovisky algebra is then the classical algebra but written in terms of the time-ordered product, together with an operator which replaces the ill defined graded Laplacian of the unrenormalized theory. We identify it with the anomaly term of the anomalous Master Ward Identity of Brennecke and D\"utsch. Contrary to other approaches we do not refer to the path integral formalism and do not need to use regularizations in intermediate steps.Comment: 34 page

    Early Asymmetric Cardio-Cerebral Causality and Outcome after Severe Traumatic Brain Injury.

    Get PDF
    The brain and heart are two vital systems in health and disease, increasingly recognized as a complex, interdependent network with constant information flow in both directions. After severe traumatic brain injury (TBI), the causal, directed interactions between the brain, heart, and autonomic nervous system have not been well established. Novel methods are needed to probe unmeasured, potentially prognostic information in complex biological networks that are not revealed by traditional means. In this study, we examined potential bidirectional causality between intracranial pressure (ICP), mean arterial pressure (MAP), and heart rate (HR) and its relationship to mortality in a 24-h period early post-TBI. We applied Granger causality (GC) analysis to cardio-cerebral monitoring data from 171 severe TBI patients admitted to a single neurocritical care center over a 10-year period. There was significant bidirectional causality between ICP and MAP, MAP and HR, and ICP and HR in the majority of patients (p < 0.01). MAP influenced both ICP and HR to a greater extent (higher GC, p < 0. 00001), but there was no dominant unidirectional causality between ICP and HR (p = 0.85). Those who died had significantly lower GC for ICP causing MAP and HR causing ICP (p = 0.006 and p = 0.004, respectively) and were predictors of mortality independent of age, sex, and traditional intracranial variables (ICP, cerebral perfusion pressure, GCS, and pressure reactivity index). Examining the brain and heart with GC-based features for the first time in severe TBI patients has confirmed strong interdependence and reveals a significant relationship between select causality pairs and mortality. These results support the notion that impaired causal information flow between the cerebrovascular, autonomic, and cardiovascular systems are of central importance in severe TBI.A.E. acknowledges the financial support of the Academy of Medical Sciences in this work

    The Quantum Sine-Gordon model in perturbative AQFT

    Get PDF
    We study the Sine-Gordon model with Minkowski signature in the framework of perturbative algebraic quantum field theory. We calculate the vertex operator algebra braiding property. We prove that in the finite regime of the model, the expectation value—with respect to the vacuum or a Hadamard state—of the Epstein Glaser S-matrix and the interacting current or the field respectively converge, both given as formal power series

    Search for lepton-flavor violation at HERA

    Get PDF
    A search for lepton-flavor-violating interactions ep→ΌXe p \to \mu X and ep→τXe p\to \tau X has been performed with the ZEUS detector using the entire HERA I data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data were taken at center-of-mass energies, s\sqrt{s}, of 300 and 318 GeV. No evidence of lepton-flavor violation was found, and constraints were derived on leptoquarks (LQs) that could mediate such interactions. For LQ masses below s\sqrt{s}, limits were set on λeq1ÎČℓq\lambda_{eq_1} \sqrt{\beta_{\ell q}}, where λeq1\lambda_{eq_1} is the coupling of the LQ to an electron and a first-generation quark q1q_1, and ÎČℓq\beta_{\ell q} is the branching ratio of the LQ to the final-state lepton ℓ\ell (ÎŒ\mu or τ\tau) and a quark qq. For LQ masses much larger than s\sqrt{s}, limits were set on the four-fermion interaction term λeqαλℓqÎČ/MLQ2\lambda_{e q_\alpha} \lambda_{\ell q_\beta} / M_{\mathrm{LQ}}^2 for LQs that couple to an electron and a quark qαq_\alpha and to a lepton ℓ\ell and a quark qÎČq_\beta, where α\alpha and ÎČ\beta are quark generation indices. Some of the limits are also applicable to lepton-flavor-violating processes mediated by squarks in RR-Parity-violating supersymmetric models. In some cases, especially when a higher-generation quark is involved and for the process ep→τXe p\to \tau X , the ZEUS limits are the most stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig. 6) adde

    Multijet production in neutral current deep inelastic scattering at HERA and determination of alpha_s

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2. The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s) = 318 GeV using the ZEUS detector and correspond to an integrated luminosity of 82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster algorithm in the longitudinally invariant inclusive mode. Measurements of differential dijet and trijet cross sections are presented as functions of jet transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections, is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.) {+0.0064}_{-0.0046}(th.)Comment: 22 pages, 5 figure

    Photoproduction of D∗±D^{*\pm} mesons associated with a leading neutron

    Full text link
    The photoproduction of D∗±(2010)D^{*\pm} (2010) mesons associated with a leading neutron has been observed with the ZEUS detector in epep collisions at HERA using an integrated luminosity of 80 pb−1^{-1}. The neutron carries a large fraction, {xL>0.2x_L>0.2}, of the incoming proton beam energy and is detected at very small production angles, {Ξn<0.8\theta_n<0.8 mrad}, an indication of peripheral scattering. The D∗D^* meson is centrally produced with pseudorapidity {∣η∣1.9|\eta| 1.9 GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive D∗D^* production is 8.85±0.93(stat.)−0.61+0.48(syst.)%8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\% in the photon-proton center-of-mass energy range {130<W<280130 <W<280 GeV}. The data suggest that the presence of a hard scale enhances the fraction of events with a leading neutron in the final state.Comment: 28 pages, 4 figures, 2 table
    • 

    corecore