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Abstract: We study the Sine-Gordon model with Minkowski signature in the framework
of perturbative algebraic quantum field theory. We calculate the vertex operator algebra
braiding property. We prove that in the finite regime of the model, the expectation value—
with respect to the vacuum or a Hadamard state—of the Epstein Glaser S-matrix and the
interacting current or the field respectively converge, both given as formal power series.

1. Introduction

Perturbative algebraic quantum field theory (pAQFT) is an approach to perturbation
theory in quantum field theory that follows the paradigm of local quantum physics
proposed by Haag and Kastler [HK64,Haa93]. The important feature of this framework
is that one separates the construction of the algebra of observables (local aspects of the
theory) from the choice of a state (global features). This is of particular importance when
generalizing the framework to quantum field theory on curved spacetime as advocated
and pioneered in [BF00,BFV03,HW02]. Since then, the pAQFT framework has been
applied to a wide class of physical problems including quantization of a bosonic string
[BRZ14,Zah16] and effective quantum gravity [BFR13]. However, as pointed out in
[Sum12], up to now it has not been tested on an interacting model for which non-
perturbative results exists. The present work means to bridge this gap and to establish
convergence results in the massless Sine-Gordon model on the 2-dimensional Minkowski
space in the model’s ultraviolet-finite regime. As it turns out, despite working with
hyperbolic signature, we can still base our proofs of summability on the proof established
in [Fro76] for a Euclidean version of the model. This way we not only test the robustness
of the pAQFT framework, but also provide the first construction of the formal S-matrix in
the massless Sine-Gordon model on R

2 (in the ultraviolet-finite regime) that is performed
directly in the Lorentzian signature. We also construct the interacting currents and the
interacting field.
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The pAQFT framework allows one to construct the local algebras solely based on the
fundamental solutions and solutions of the underlying linear (hyperbolic) partial differ-
ential equation. No Fock space is needed to calculate, e.g., the S-matrix, which is given
as a formal power series over a certain space of functionals. Moreover, it is not neces-
sary to pass to a Wick rotated Euclidean version of the theory with an underlying elliptic
PDE. Renormalization is formulated as a procedure of extending the time ordering map
from regular functionals to local functionals, in the spirit of [EG73] (i.e., in particular
in finite volume). The infrared cutoff is given by a compactly supported test function
cutting off the interaction term, and it is usually kept throughout the calculations. The
idea behind this is that local measurements do not depend on the particular choice of this
test function. To calculate expectation values, a state is chosen, but it is not necessary to
take this choice—which on general manifolds is not canonical—as the starting point of
the construction.

In the current paper, we work with the Sine-Gordon model in the regime of the
coupling constant for which there is no need for renormalization, so the time ordered
products are constructed directly and, as distributions, they are shown to satisfy certain
bounds. This makes it unnecessary to use the inductive procedure of Epstein and Glaser,
but the formal S-matrix that we construct has the same physical interpretation as the
object introduced in [EG73].

We use the 2-point function of a Hadamard state for the massless scalar field in 2
dimensions to construct the star product of the free theory and, indirectly, to construct
the time-ordered products. Such Hadamard states were given, for example, in [Sch12,
DM06]. The choice of the Hadamard state is not unique, but different choices lead
to isomorphic algebraic structures. In order to link our investigation directly to the
calculations performed in the Euclidean setting [Fro76,Col75], we investigate also an
alternative approach. We introduce an auxiliary finite mass m and study the m → 0 limit
of the expectation value of the S-matrix in the vacuum state for the massive theory. The
resulting quantity can be interpreted as the expectation value of the S-matrix in a rather
singular state, as clarified in Sects. 4 and 5.

The paper is organized as follows. We start by recalling the essential ideas and tools
from pAQFT in the following (second) section. The third section is devoted to the Sine-
Gordon model and more particularly, the vertex operators in our framework. In the fourth
and fifth section we show summability of the S-matrix, the interacting current and the
field itself.

2. The Framework of pAQFT

Let MD be the D-dimensional Minkowski spacetime, i.e. R
D with the diagonal metric

diag(1,−1, . . . ,−1) and corresponding inner product denoted by x · x . Starting point in
the pAQFT construction of models is the classical configuration space E that specifies
the type of objects we want to describe. In general, it is the space of smooth sections of
some vector bundle over MD . For the scalar field theory, we have E

.= C∞(MD, R). We
equip E with its standard Frechét topology.

Next, we consider the space of smooth functionals on E (smoothness understood in
the sense of [Bas64,Ham82,Mil84,Nee06]). Among these, there are some important
classes of functionals that are relevant for the construction of models in pAQFT. Firstly,
we introduce the notion of local functionals.
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Definition 1. A functional F ∈ C∞(E, C) is called local (an element of Floc) if for each
ϕ0 ∈ E there exists an open neighbourhood V of ϕ0 in E and k ∈ N such that for all
ϕ ∈ V we have

F(ϕ) =
∫

MD

α( jk
x (ϕ)) , (2.1)

where jk
x (ϕ) is the k-th jet prolongation of ϕ and α is a density-valued function on the

jet bundle.

The spacetime localisation of a functional is provided by the notion of spacetime support

supp F
.= {x ∈MD|∀ neighbourhoods U of x ∃ϕ,ψ ∈ E, supp ψ ⊂ U ,

such that F(ϕ + ψ) �= F(ϕ)}. (2.2)

The notion of smoothness that we use implies that functional derivatives of a
smooth functional F ∈ C∞(E, C) can be seen as compactly supported distributions,
i.e. F (n)(ϕ) ∈ Ŵ′(Mn

D, R)C ≡ E ′(Mn
D)C, where the superscript C indicates complexifi-

cation. One can require a stronger condition, i.e. consider functionals whose derivatives
are smooth. This motivates the following definition.

Definition 2. A functional F ∈ C∞(E, C) is called regular, i.e F ∈ Freg, if F (n)(ϕ) ∈
Ŵc(M

n
D, R)C ≡ D(Mn

D)C for all n ∈ N, ϕ ∈ E .

More generally, one can impose different, less restrictive conditions on the regularity
structure of functional derivatives of functionals, seen as distributions. To describe the
singularity structure, it is convenient to use Hörmander’s wavefront (WF) set [Hor03],
a refined notion of the singular support of a distribution. It is a subset of the cotangent
bundle whose projection onto the base is the singular support of the distribution (and
whose covariables give the high frequency cone). It yields the following very simple
sufficient criterion for the existence of products of distributions: if no two covariables
(at the same base point) from the two respective wavefront sets can bee added to give
0, the product exists as a distribution. Later on, we will see that the following class
of functionals is a good choice for building models of pAQFT’s; for other choices see
[DB14,Dab14a,Dab14b].

Definition 3. A functional F ∈ C∞(E, R) is called microcausal, F ∈ Fμc, if it is
compactly supported and satisfies

WF(F (n)(ϕ)) ⊂ �n, ∀n ∈ N, ∀ϕ ∈ E , (2.3)

where �n is an open cone defined as

�n
.= T ∗Mn\{(x1, . . . , xn; k1, . . . , kn)|(k1, . . . , kn) ∈ (V

n

+ ∪ V
n

−)(x1,...,xn)} , (2.4)

where (V±)x is the closed future/past lightcone understood as a conic subset of T ∗x MD .

The construction of models in pAQFT starts with the free theory with the equation
of motion of the form

Pϕ = 0 ,

where P is a normally hyperbolic operator. For such operators there exist unique retarded
(forward) and advanced (backward) fundamental solutions �R, �A respectively. Their
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difference � = �R −�A is called the commutator function (or the causal propagator).
As a distribution, � has WF set of the form

WF � = {(x, k; x ′,−k′) ∈ Ṫ ∗M2
D|(x, k) ∼ (x ′, k′)} ,

where the equivalence relation ∼ means that there exists a null geodesic strip such that
both (x, k) and (x ′, k′) belong to it. One can then split [Rad96] � as a sum of two
distributions

i

2
� = W − H (2.5)

in such a way that H is symmetric and the WF set of W (interpreted physically as the
2-point function) is

WF W = {(x, k; x ′,−k′) ∈ Ṫ ∗M2
D|(x, k) ∼ (x ′, k′), k ∈ (V +)x }.

The latter condition allows us to introduce the following non-commutative product for
microcausal functionals F, G ∈ Fμc,

(F ⋆H G)(ϕ)
.=
∞∑

n=0

�
n

n!

〈
F (n)(ϕ), W⊗nG(n)(ϕ)

〉
, W = i

2
� + H. (2.6)

which gives a star product in the sense of formal power series on Fμc[[�]]. The decom-
position (2.5) is in general not unique and different choices of W are labeled by its
different symmetric parts H . The difference H − H ′ between two such choices is a
smooth function, so the two star products ⋆H and ⋆H ′ are related by an equivalence in
the sense of formal power series (“gauge transformation”) αH : Fμc[[�]] → Fμc[[�]]
given by

αH−H ′
.= e

�

2 DH−H ′ ,

where, in terms of formal integral kernels (i.e. symbolic notation that makes the calcu-
lations easier),

DH−H ′
.=

〈
H − H ′,

δ2

δϕ2

〉
=

∫
(H(x, y)− H ′(x, y))

δ2

δϕ(x)δϕ(y)
dxdy

and we have

F ⋆H ′ G = α−1
H−H ′

(
αH−H ′(F) ⋆H αH−H ′(G)

)
. (2.7)

Note that the algebraic structure presented here looks the same for arbitrary dimension
D of MD , but the concrete form of W , H and � would be different.

Let us now discuss how the star product ⋆H allows one to formulate the algebraic
version of Wick’s theorem and define Wick ordered quantities without using a concrete
Hilbert space representation. We follow the construction introduced in [DF01b,BDF09].
Given a regular functional F ∈ Freg, the formal power series formula for the Wick
ordered expression is

:F : = e−
�

2 DH F = α−1
H F ∈ Freg [[�]] , where αH =̇e

�

2 DH . (2.8)
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In order to extend this prescription to more general (in particular non-linear local) func-
tionals, one uses a limiting procedure. Consider Fμc equipped with a topology τHoe,
which is a variant of the Hörmander topology, see [BDF09,BDH14,DB14,Dab14a] for
possible definitions of this topology and section 4.4.2 of [Rej16] for a review.

Define Aμc[[�]] as follows: take the completion of Freg (in the initial topology w.r.t.

αH ) and then select the subspace of all those A ∈ Freg[[�]], A = lim An for some
sequence in Freg[[�]], which satisfy

αH (A) = lim
n

αH (An) ∈ Fμc[[�]].

Now approximate F ∈ Fμc by regular functionals F = lim Fn where Fn ∈ Freg and
define the corresponding normally ordered quantity as

:F : = lim α−1
H Fn ∈ Aμc[[�]].

We denote by Aloc[[�]] the subspace of Aμc[[�]] consisting of elements that arise as :F :,
where F ∈ Floc[[�]].

On regular functionals we can introduce a star product that is independent of H :

(F ⋆ G)(ϕ)
.=
∞∑

n=0

�
n

n!

〈
F (n)(ϕ),

(
i
2
�

)⊗n
G(n)(ϕ)

〉
, F, G ∈ Freg. (2.9)

We then have

αH (:F : ⋆ :G:) = F ⋆H G (or :F : ⋆ :G: = :F ⋆H G:) (2.10)

where

F ⋆ G = μ ◦ e
i�
2 D� F ⊗ G ∈ Freg[[�]]

and

F ⋆H G = μ ◦ e�DW F ⊗ G ∈ Freg[[�]]

with

DK (F ⊗ G) =
〈
K ,

δF

δϕ
⊗

δG

δϕ

〉
=

∫
K (x, y)

δF

δϕ(x)

δG

δϕ(y)
dxdy for kernel K

and where μ denotes the pullback along ϕ �→ ϕ ⊗ ϕ.
This works also after the limiting procedure since

(Freg[[�]], ⋆)
αH−→ (Freg[[�]], ⋆H )

↓ ↓
(Aμc[[�]], ⋆)

αH−→ (Fμc[[�]], ⋆H )

where the down arrows are embeddings hence injective. The relation between ⋆H and ⋆

encodes the combinatorics of the Wick theorem. While the star product ⋆ is the “standard”
product of the quantum theory, one can trade such products of Wick ordered quantities
:F : and :G: for ⋆H -products of ordinary functionals F and G, using formula (2.10). This
is a big advantage of the pAQFT framework, since it allows us to write down concrete
expressions and discuss convergence of formal power series without going to a Hilbert
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space (or Krein space as in [Pie88]) representation. The only input is the 2-point function
W .

Generally, a Gaussian state on Aμc[[�]] with covariance H is defined by evaluation
of αH (A) in a configuration ϕ ∈ E ,

ωϕ,H (A)
.= αH (A)(ϕ) for all A ∈ Aμc[[�]]. (2.11)

The choice ϕ = 0 in the above is distinguished by the fact that ω0,H is then exactly the

expectation value in the state whose 2-point function is given by W = i
2
� + H (see

for example the discussion around formula (67) in [FR15a], where the more compli-
cated case of curved spacetimes is treated). As explained above, instead of working in
(Aμc[[�]], ⋆) we can work in (Fμc[[�]], ⋆H ) and motivated by the discussion above, we
introduce the notation

F(ϕ) =: 〈F〉ϕ ,

for a functional F ∈ Fμc[[�]].
The motivation behind the pAQFT approach is to make precise the Dyson formula

for the scattering matrix and interacting fields. Consider scalar field on D-dimensional
Minkowski spacetime MD . Recall that, heuristically, the Dyson formula for the inter-
acting time evolution operator UI (t, s) is

UI (t, s) = 1 +

∞∑

n=1

inλn

n!

∫

([s,t]×RD−1)n

T (:LI (x1): . . . :LI (xn):)d Dx1 . . . d Dxn ,

where λ is the coupling constant, T denotes time-ordering and the interaction Lagrangian
:LI : is an operator-valued “function”. This formula suffers from both UV and IR diver-
gences. A way to give it mathematical meaning is to use the framework of Epstein and
Glaser [EG73]. Here, the IR problem is solved by systematically treating the interaction
Lagrangian as an operator valued distribution, and evaluating the n-fold time-ordered
product T (:LI : ⊗ · · · ⊗ :LI :) in g⊗n , where g is a compactly supported test function
on MD . The UV divergences are controlled after carefully defining the time-ordered
products.

Let us now recall this construction in the framework of pAQFT, see e.g. [Rej16]. To
avoid UV problems for the moment, we consider for now only regular functionals. Let
F, G ∈ Freg, then the time-ordered product of F and G is defined as

F ·T G
.= μ ◦ ei�DD(F ⊗ G) =

∞∑

n=0

�
n

n!

〈
F (n),

(
i�D

)⊗n

G(n)

〉
,

where �D is the Dirac propagator defined as

�D =
1

2
(�R + �A). (2.12)

More generally, we define n-fold time-ordered products maps Tn : F⊗n
reg [[�]] →

Freg[[�]], given by

Tn(F1 ⊗ · · · ⊗ Fn)
.= F1 ·T . . . ·T Fn , F1, . . . , Fn ∈ Freg[[�]].
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Now consider an interaction :V :with V ∈ Freg, where normal ordering is defined by

the power series α−1
H V given in formula (2.8).

Then the formal S-matrix is

S(λ :V :) .= e
iλV/�

T
=
∞∑

n=0

1

n!
( iλ

�
)n :V : ·T . . . ·T :V :︸ ︷︷ ︸

n

. (2.13)

These formulae are well-defined for regular functionals, but usually, physically rele-
vant interaction terms are local and non-linear, hence not regular. Therefore, one needs
to extend S from a map on Freg[[�]] to a map on Aloc[[�]]. To this end, one first sets

T
H

n
.= αH ◦ Tn ◦ (α−1

H )⊗n (2.14)

and writes the S-matrix as

S(λ :V :) = α−1
H

∞∑

n=0

1
n! (

iλ
�

)n
T

H
n (V⊗n)

.= α−1
H

∞∑

n=0

Sn(V ). (2.15)

It follows that extending S to a map on Aloc[[�]] (with values in Aμc[[λ]]((�))) is

reduced to extending for any n ∈ N, the time ordering T H
n to a map on Floc[[�]] (with

values in Fμc[[�]]). This extension problem is called renormalization problem and it
is usually solved recursively using the Epstein Glaser procedure [EG73,BF00,BDF09].
The combinatorial formula for T H

n is

T
H

n = e
�

∑
i< j D

i j
F , (2.16)

where the sum runs over all 1 ≤ i < j ≤ n and where D
i j
F

.= 〈�F, δ2

δϕi δϕ j
〉 and �F is

the Feynman propagator defined by

�F :=
i

2
(�R + �A) + H.

Observe that we use the term “Feynman propagator” to describe the bi-distribution
obtained from the canonical, uniquely defined Dirac propagator by adding H . In this
sense, the choice of the Feynman propagator is fixed by the choice of H , which in turn
corresponds to the choice of the 2-point function W . This terminology, introduced in
[BDF09], is convenient in curved spacetimes, where, generically, there is no natural
choice of W , hence no natural choice of the Feynman propagator.

In this paper, we treat the non-perturbative case, so we need to generalize the setting
above to the situation where � is not a formal parameter, but a number. We proceed in
a similar way. We equip the space of smooth functionals C∞(E, C) with the topology
τ of pointwise convergence of all the derivatives. The n-th functional derivative of
F ∈ C∞(E, C) at ϕ ∈ E is treated as an element of E ′(Mn

D)C, equipped with the
standard weak topology. We define A similarly to Aμc[[�]], by replacing Fμc[[�]] with
(C∞(E, C), τ ).
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3. The Sine-Gordon Model and Vertex Operators

Starting point in the construction of the Sine-Gordon model is the free theory given by
(minus) the massless Klein Gordon (i.e wave) operator P = −� on two-dimensional
Minkowski spacetime M2 = (R2, η), where η = diag(1,−1). Let �R and �A denote
the retarded and advanced (forward and backward) fundamental solutions1 of P .

Remark 4. (Notation) In flat spacetime we use the translation symmetry to express a
translation invariant bi-distribution in terms of a distribution in one variable (the differ-
ence variable). By common abuse of notation, we use the same symbols for the latter as
for the corresponding bi-distributions, i.e. u(x, y) = u(x − y).

Retarded and advanced fundamental solutions are given in terms of the following dis-
tributions in one variable:

�R(x) = − 1
2
θ(t − |x|) �A(x) = − 1

2
θ(−t − |x|), where x = (t, x) ∈M2.

The 2-point function of the free massless scalar field ϕ in 2 dimensions [Pie88] coincides
with the Hadamard parametrix [Sch12]

W (x) = −
1

4π
ln

(
−x · x + iεt

�2

)
,

where � > 0 is the scale parameter. To work with dimensionless quantities, we choose
the units so that we can set � = 1. It is well known that W is not a 2-point function
of a Hadamard state, since, as a bi-distribution, it fails to be positive definite [Wig67].
Therefore, if one wants to study representations of the abstract algebra from Sect. 2,
one can apply the Krein space construction [MPS90] or use the GNS representation of
a Hadamard state. Note that the 2-point function of such a state differs from W only by
a smooth symmetric function on M

2
2. Hence, the algebraic structure of the theory (e.g.

the vertex operators algebra) can be studied independently of the choice of a Hadamard
state.

We first write the 2-point function W in terms of a symmetric (H ) and antisymmetric

(�) contribution, W = i
2
�+ H . The antisymmetric contribution is the causal propagator

i
2
� = i

2
(�R −�A) (3.17)

and a short calculation (see the appendix A) then shows (invoking the notation from
Remark 4) that

H(x) = − 1
4π

(ln |t + x| + ln |t − x|) = − 1
4π

(
ln |x2|

)
(3.18)

The wavefront sets of the distributions �, �A/R are such that Hörmander’s sufficient
criterion for the existence of products of distributions does not apply, essentially because
the wavefront set of the Heaviside function is that of the δ-distribution. However, we will
use that the characteristic function χ[0,∞) squares to itself and hence we set θ2 = θ (as
distributions). Similarly, we set the product of θ and θ ◦ j where j (x) = −x , to 0, which

1 To see that these are indeed fundamental solutions, observe that − 1
2 θ(t − |x|) = − 1

2 θ(t − x)θ(t + x)

to calculate �(− 1
2 θ(t − |x|)) = −δ in the sense of distributions. Use ∂1θ(t − |x|) = −ε(x)δ(t − |x|) and

∂1ε(x) = 2δ(x).
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is justified since the product of the locally integrable functions χ[0,∞) and χ(−∞,0] is 0

in L1
loc.

Explicitly, we find for n ∈ N,

�n(x) = (− 1
2
)n(θ(t − |x|)− θ(−t − |x|))n

= (− 1
2
)nθ(t − |x|) + ( 1

2
)nθ(−t − |x|) (3.19)

W n(x) =
n∑

k=0

(n

k

) (
− i

4

)n−k
(
θ(t − |x|) + (−1)n−kθ(−t − |x|)

)
H k . (3.20)

Note that the powers of the 2-point function W are well-defined as usual, but contrary
to the behaviour of massless fields in higher dimensions, also powers of the commutator
function � are.

We will now study the exponential series of these distributions in the following sense:
Let u ∈ D′(Rk) be such that arbitrary powers un , n ∈ N, are again distributions. Then
one can investigate if the series

eu(g) :=
∞∑

n

1
n!u

n(g)

converges (in R) for any g ∈ D(Rk). This is the case, for instance, if u is smooth and
polynomially bounded. In terms of formal integral kernels, we write

eu(g) =
∞∑

n

1
n!

∫
u(x)ng(x)dx =:

∫
eu(x)g(x)dx

Observe that the last equality is simply short hand notation (not an interchanging of
integration and taking sums). However, if u is smooth and eu(x) converges pointwise,
then since g is compactly supported, eu(x)g(x) converges uniformly (on supp g) and in
this case, the integral and the summation can indeed be interchanged. In the same spirit
we regard the identity

(euev)(g) =
∞∑

n

1
n!

∞∑

m

1
m!

∫
u(x)nv(x)m g(x)dx = eu+v(g)

This notation is now used to calculate the commutation relation of two vertex oper-
ators :Va( f ):. We first apply normal ordering to vertex operators,

:Va(x): ≡ :Va(t, x): .= :exp(ia�(t,x)): ,

where a > 0, �(t,x) is the evaluation functional, i.e. �(t,x)(ϕ) = ϕ(t, x) for ϕ ∈ E , and
where the Wick product is defined by (2.8). These are the vertex operators. The smeared
vertex operators are then defined by evaluating in a test function g,

:Va(g): .= :
∫

exp(ia�x )g(x)dx : ∈ Aμc[[�]]. (3.21)

Here, we face the additional complication that the distributions depend on ϕ ∈ E . We
will treat this dependence pointwise as discussed at the end of Sect. 2.

In terms of formal integral kernels and using the formula for products of normally
ordered functionals (2.10) and evaluation in states (2.11), we find
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αH (:Va( f ): ⋆ :Va′(g):) (ϕ) =
(

exp(ia�)( f ) ⋆H exp(ia′�)(g)
)
(ϕ)

=
∑

n

�
n

n!

∫
. . .

∫ n∏

j=1

W (x j , y j ) ·
δn

(∑
k

ik ak

k! ϕk
)

δϕ(x1) . . . δϕ(xn)
( f ) ·

δn
(∑

k
ik a′k

k! ϕk
)

δϕ(y1) . . . δϕ(yn)
(g) d2n xd2n y

=
∑

n

�
n

n!

∫
. . .

∫ n∏

j=1

W (x j , y j ) ·
( ∑

k≥n

ik ak

k!
k!

(k−n)! δ(x1 − x) · · · δ(xn − x)ϕk−n f (x)

)

·
(∑

k≥n

ik a′k
k!

k!
(k−n)! δ(y1 − y) · · · δ(yn − y)ϕk−ng(y)

)
d2n xd2n y

=
∑

n

�
n

n!

∫
W (x, y)nana′ni2n exp(iaϕ(x)) f (x) exp(ia′ϕ(y))g(y). (3.22)

In the spirit of the comments above we interpret the sum as the distribution e−aa′�W (x,y),
so

αH (:Va( f ): ⋆ :Va′(g):) =
∫

e−aa′�W (x,y) f (x)g(y) Va(x)Va′(y) dxdy

=
∫

e−aa′� i
2 �(x,y)−aa′�H(x,y) f (x)g(y) Va(x)Va′(y) dxdy

Reversing the order of the vertex operators (i.e. interchanging a and a′ and f and g, or
the roles of x and y) we find

αH (:Va′(g): ⋆ :Va( f ):) =
∫

e−aa′�W (y,x) f (x)g(y) Va′(y)Va(x) dxdy

=
∫

e+aa′�( i
2 �(x,y)−aa′�H(x,y) f (x)g(y) Va′(y)Va(x) dxdy

and deduce that in terms of formal integral kernels, the commutation relations are

:Va(x): ⋆ :Va′(y): = e−aa′�i�(x,y) :Va′(y): ⋆ :Va(x): .

Denote x = (x, t), y = ( y, t ′). Using

e−aa′�i�(x,y) = 1− θ((t − t ′)− |x − y|)− θ(−(t − t ′)− |x − y|)
+ eaa′i�/2 θ((t − t ′)− |x − y|) + e−aa′i�/2 θ(−(t − t ′)− |x − y|) ,

we see a posteriori that the exponential series is well defined in this case. We get, in
particular, for x = y and t > t ′,

Va(t, x)Va′(t
′, x) = eaa′i�/2Va(t, x)Va′(t

′, x) ,

which is the well-known braiding property for vertex operators derived from e.g. [Kac94,
eqn 14.8.10].

To further clarify the relation of our approach with the known literature on the
Euclidean version of the Sine-Gordon model, we now calculate the vacuum expectation
value of the product of 2 vertex operators (cp. [Fro76, Lemma 2.2]). Let Wv = W + v

be a 2-point function of some Hadamard state for the appropriately chosen symmetric
smooth function v. Let Hv = H + v. The new star product is equivalent to ⋆H and the
equivalence is provided by the map αHv .
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Let us now evaluate the product of two vertex operators in the Gaussian state with
covariance Hv as explained in (2.11) and calculate the vacuum expectation value (cp.
[Fro76, Lemma 2.2]). For the latter, we find

ω0,H (:Va( f ): ⋆ :Va′(g):) =
〈(∫

eiaϕ(x) f (x)dx

)
⋆H

(∫
eiaϕ(y)g(y)dy

)〉

0

=
∫

e−aa′�W (x,y) f (x)g(y) dxdy

=
∫

f (x)g(y)((t − t ′)2 − (x − y)2 + i(t − t ′)ε)�aa′/4π dxdy

while the expectation value in the Hadamard state with covariance Hv = H + v is

ω0,Hv (:Va( f ): ⋆ :Va′(g):) =
∫

e−aa′v(x,y) f̃ (x)g̃(y)

((t − t ′)2 − (x − y)2 + i(t − t ′)ε)�aa′/4π dxdy ,

where f̃ = e−a2v f , g̃ = e−a′2vg, so, in particular, the change of normal ordering of the
vertex operators can be absorbed into the re-definition of test functions.

4. The pAQFT S-matrix of the Sine-Gordon Model

Let us now apply the pAQFT framework to calculate the S-matrix S for a potential of
the form V = 1

2
(Va + V−a). We will calculate the expectation value of S(λ :V :) in the

coherent state ωϕ,Hv , where Hv is the symmetric part of the 2-point function of some
Hadamard state Wv . For now we assume that there is no need to renormalize – which
will a posteriori be justified by the calculations. First note that we can simplify the
computation in the following ways:

Remark 5. In our approach, αHv ◦S ◦α−1
Hv

is a map on functionals and therefore, comput-
ing the expectation value in ωϕ,Hv reduces to computing the evaluation of the functional

αHv ◦S◦α−1
Hv

(λV ) at the configuration ϕ. Also note that we can first construct αH ◦S◦α−1
H

for H given by (3.18) and then pass to αHv ◦ S ◦ α−1
Hv

using the intertwining map αHv .

According to formula (2.15), the S-matrix is

S(λ :V :) = α−1
H

∑

n

1
n! (

iλ
�

)n( 1
2
)n

T
H

n ((Va + V−a)⊗n)

= α−1
H

∑

n

1
n! (

iλ
�

)n( 1
2
)n

n∑

k=0

(n

k

)
T

H
n

(
V⊗k

a ⊗ V
⊗(n−k)
−a

)

︸ ︷︷ ︸
.=Sn(V )

, (4.23)

where the second identity follows from the fact that the time-ordered product is com-
mutative.

We will now explicitly compute the S-matrix for the Sine-Gordon model and show
that the resulting series converges in A (as defined at the end of Sect. 2). To calculate
T H

n , we first determine the Feynman propagator of the Sine-Gordon model

�F(t, x) = i
2
(�R + �A) + H, (4.24)
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which can also be written, using the well-known ǫ-prescription as

�F(t, x) = − 1
4π

ln(x2 − iǫ) ,

cf. again the appendix A.

Using the explicit form of the Feynman propagator (4.24), we find

T
H

n

(
Va1 ⊗ · · · ⊗ Van

)
(g⊗n) =

∫
ei(a1ϕ(x1)+···+anϕ(xn))

×
∏

1≤i< j≤n

θai a j
(τi j , ζ i j ) |τ 2

i j − ζ 2
i j |�ai a j /4π g(x1) . . . g(xn)dx (4.25)

with τi j = ti − t j and ζ i j = xi − x j and with the abbreviation

θai a j
(τ, ζ ) = θ(τ + |ζ |)− θ(τ − |ζ |) + (θ(τ − |ζ |) + θ(−τ − |ζ |)) eiai a j �/4.

To see this, observe that (with τ = t − t ′, ζ = x − x′) we have

e−aa′��F(x,y) = e
aa′�

(
i
4
(θ(τ−|ζ |)+θ(−τ−|ζ |))

)

e
aa′�

(
1

4π
ln |τ 2−ζ 2|

)

=
(

1− θ(−τ − |ζ |)︸ ︷︷ ︸
=θ(τ+|ζ |)

−θ(τ − |ζ |) + (θ(τ − |ζ |) + θ(−τ − |ζ |)) e
aa′�i

4

)

×|τ 2 − ζ 2|
�aa′
4π ,

where the second equality follows from the idempotency of the Heaviside function,
eaθ = 1 + aθ + 1

2
a2θ + · · · = 1− θ + θea for any real a.

Observe that for ai = −a j = a, the product ai a j equals −a2, and the term |τ 2
i j −

ζ 2
i j |�ai a j /4π in (4.25) is singular in ti− t j = ±(xi−x j ). Using translation invariance we

reduce this to a problem of a singularity along τ = ±ζ (for a distribution defined on R
2).

This singularity is within the support of the Heaviside functions in (4.25). However, this
is a homogeneous distribution which, as long as a2

�/4π �∈ N, has a unique extension
according to [Hor03, Thm 3.2.3] and the prescription from [BF00], see also [NST13].
We will see below directly that these contributions are well-defined for a2

�/4π < 1.

We now prove our main estimate, which gives a bound on the distributional product
occuring at n-th order perturbation theory as given in (4.25). This bound will enable us
to prove that the S-matrix converges.

Theorem 6. Let β
.= �a2/4π < 1. Let p > 1 such that βp < 1. Let g ∈ C∞c (R2)

be a function cutting off the interaction V , and let f = g⊗n . Consider the expectation

value of the n-th order contribution to the S-matrix of Sine-Gordon theory in the state

ωϕ,H with H from (3.18). Choosing the support of g small enough, there is a constant

C = C(p, g) such that for all n,

∣∣∣Sn(V )( f )(ϕ)

∣∣∣ ≤
⌊ n

2
⌋Cnλn

(n!)1−1/p
,

where Sn(V ) is given by (4.23).
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Proof. According to remark 5, we indeed only need to evaluate the functional Sn(V )(g)

at the configuration ϕ.

Now, we consider a contribution to (4.23) of the form T H
n

(
V⊗k

a ⊗ V⊗n−k
−a

)
for

1 ≤ k ≤ n fixed.
In the explicit form of the timeordering (4.25), we estimate the functions θai a j

(τ, ζ ),
which are given in terms of Heaviside functions and an oscillating factor, by 1. Without
these functions, and neglecting the exponentials containing ϕ, the formal integral kernel

of T H
n

(
V⊗k

a ⊗ V⊗n−k
−a

)
(ϕ) is

∏

1≤i< j≤k

|τ 2
i j − ζ 2

i j |β
∏

1≤i≤k,k< j≤n

|τ 2
i j − ζ 2

i j |−β
∏

k<i< j≤n

|τ 2
i j − ζ 2

i j |β .

with β = �a2/4π > 0, and with the time variable differences τi j = ti − t j and the space
variable differences ζi j = xi − x j . We rewrite this formula using

|τ 2 − ζ 2| = |τ − ζ | |τ + ζ |

and consider the two factors separately,

w±n,k(τ , ζ )
.=

∏

1≤i< j≤k

|τi j ± ζ i j |β
∏

1≤i≤k,k< j≤n

|τi j ± ζ i j |−β
∏

k<i< j≤n

|τi j ± ζ i j |β

(4.26)

with the underlined variables denoting the collection of all the respective difference
variables.

We now introduce new variables, z, z′ ∈ R
k , w,w′ ∈ R

n−k ,

zi = ti − xi 1 ≤ i ≤ k

wi−k = ti − xi k + 1 ≤ i ≤ n

z′i = ti + xi 1 ≤ i ≤ k

w′i−k = ti + xi k + 1 ≤ i ≤ n

Then we have

τi j − ζi j =

⎧
⎨
⎩

zi − z j 1 ≤ i < j ≤ k

zi − w j−k i ≤ k, k + 1 ≤ j ≤ n

wi−k − w j−k k + 1 ≤ i < j ≤ n

and likewise for the +-combination,

τi j + ζi j =

⎧
⎨
⎩

z′i − z′j 1 ≤ i < j ≤ k

z′i − w′j−k i ≤ k, k + 1 ≤ j ≤ n

w′i−k − w′j−k k + 1 ≤ i < j ≤ n

.

Therefore, we find

w−n,k(z, w) =
∏

1≤i< j≤k

|zi − z j |β
∏

1≤i< j≤n−k

|wi − w j |β
∏

1≤i≤k,1≤ j≤n−k

|zi − w j |−β

(4.27)
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and likewise for the +-combination, with the primed variables, w+
n,k(z

′, w′). Note that
for the negative powers we indeed get an unordered product (no relation i < j). This
is a consequence of the fact that in the second factor in (4.26), the two indices are
independent. Note also that for k < n/2 there are more w-variables than z-variables
while for k > n/2 there are more z-variables.

In this notation, we find

|Sn(V )( f )(ϕ)|

≤
1

n!
Cn

0

n∑

k=0

(n

k

) ∫
w−n,k(z, w)w+

n,k(z
′, w′)| f (z, w, z′, w′)|dz . . . dw′, (4.28)

where by abuse of notation, we use the same symbol f to denote f in the new coordinates
and where C0 = λ

2�
.

In this sum, we now consider a contribution with k ≤ n/2, i.e. one with less (or
equally many) powers of Va than powers of V−a . Observe that this is without loss of
generality, since the contributions with k > n/2 can be treated in exactly the same way
with the roles of w and z interchanged.

We will see that in order to estimate the contributions with k ≤ n/2, we need a
generalization of the argument leading to “The main estimate c” before Thm 3.4 in
[Fro76] – an estimate which is still useful despite the fact that we started from a theory
with hyperbolic signature.

The starting point of our estimate is a generalization of the Cauchy determinant
lemma, which we use to rewrite w−n,k(z, w) as |Det D|β , where D is the l × l-matrix

(l = n − k) with entries2

Di j =
{

wi−1
j , 1 ≤ i ≤ l − k,

1/(zi−l+k − w j ), l − k < i ≤ l.

Note here that the number l − k = n − 2k counts how many more w variables there are
than z-variables.

We can proceed in exactly the same way for the +-combination w+
n,k(z

′, w′). Since

the plus and the minus case are exactly the same, we only discuss w−n,k and the integration
over the unprimed variables. In notation, we suppress the unprimed variables, writing
F(z, w) for f (z, w, z′, w′). Hence we consider

∫
w−n,k(z, w)|F(z, w)|dzdw =

∫
|Det D|β |F(z, w)|dzdw

We will now calculate an estimate on this integral’s dependence on n, relying heavily
on the assumption that β

.= �a2/4π < 1.
Directly following the argument from [Fro76], we first choose p > 1 with βp < 1

and set 1 < q
.= p

p−1
< ∞. Viewing the compactly supported smooth function F as

an element of Lq(Rn), the Hölder inequality ‖F H‖1 =
∫
|F H |dx ≤ ‖F‖q‖H‖p for

1
q

+ 1
p
= 1, yields

∫
|Det D|β |F(z, w)|dzdw ≤ ‖F‖Lq (Rn)

(∫

Kg

|Det D|βp dzdw

) 1
p

,

2 We thank K. Fredenhagen for pointing out this formula to us.
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where Kg is the compact set given by considering the support of f (z, w, z′, w′) only
with respect to the z, w variables,

Kg
.= �z,w supp f

.= {(z, w) ∈ R
n| there is (z′, w′) ∈ R

n s.t. f (z, w, z′, w′) �= 0}cl ,

where cl denotes closure and � stands for projection rather than product. Observe that
this is a compact set in R

n that really only depends on the test function g’s support in
R

2, since

f (z, w, z′, w′) =
k∏

i=1

g
(

1
2
(zi + z′i ),

1
2
(zi − z′i )

) n−k∏

j=1

g
(

1
2
(w j + w′j ),

1
2
(w j − w′j )

)
.

Similarly, one finds that there is a constant, depending on the support of g (and on q),
such that

‖F‖Lq (Rn) ≤ (Cg,q)n . (4.29)

To compute the determinant, we use the Laplace expansion. In order to separate
the contributions from the Vandermonde part of the matrix from those of the classic
Cauchy matrix, we consider all matrices that are obtained by taking the first l − k rows
of D and choosing l − k (of the l) columns of D. Such matrices are called Dc with c

being the collection of labels denoting the choice of columns, c = (c1, . . . , cl−k) with
1 ≤ c1 < · · · < cl−k ≤ l, Let D′c denote the k × k-matrix that is complementary to Dc.
Then up to a sign, the determinant of D is

∑

c

(−1)|c|Det Dc Det D′c. (4.30)

where |c| = c1 + · · · + cl−k , and we find

∫

Kg

|Det D|βp dzdw ≤
∑

c

∫

Kg

∣∣Det Dc Det D′c
∣∣βp

dzdw

Here, we have used the triangle inequality and the fact that
(∑
| . . . |

)βp ≤
∑
| . . . |βp

for βp < 1.

Note that each Det Dc is a Vandermonde determinant in the variables wi , where
i ∈ c; and Det D′c is a Cauchy determinant of a matrix with entries 1/(zi − w̃ j ), where
1 ≤ i, j ≤ k and (w̃1, . . . , w̃k)

.= (wi )i∈c′ , where c′
.= {1, . . . , l}\c is the set of

complementary column labels. Therefore, we can factor each integral in the sum into a
product of integrals over the Cauchy- and the Vandermonde determinant, respectively.

We first give the estimate on the Vandermonde determinants. Let m
.= |c| = l − k =

n − 2k, the number that counts how many more w-variables there are compared to
z-variables. Then the Vandermonde Determinant is a homogeneous polynomial PV of
degree 1

2
m(m − 1) and we conclude that there are constants such that

∫

Kg,c

|PV (u1, . . . , um)|βp du ≤ Vol(Kg,c) sup
Kg,c

|PV (u1, . . . , um)|βp

≤ (Cg,c)
m (C̃g,c,p)

1
2

m(m−1)
,
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where Kg,c denotes the projection of Kg onto the variables wi , i ∈ c, in the sense
explained above,

Kg,c
.= �c Kg

.= {(wi )i∈c ∈ R
m | there is (z, (w j ) j∈c′) ∈ R

2k s.t. χKg (z, w) �= 0}cl .

Observe that the constants depend on the choice of c. By choosing the test function g

appropriately, we can make the constants arbitrarily small, so we get an estimate
∫

Kg,c

|PV (u1, . . . , um)|βp du ≤ (CV d M
g,c,p )m (4.31)

where V d M is short for Vandermonde. For the Cauchy determinants, we directly follow
[Fro76, (3.15)], and find an estimate

∑

π∈Sk

∫

Kg,z,c′

k∏

j=1

1

|z j − w̃π( j)|βp
dzdw̃ ≤

∑

π∈Sk

(Cg,c,p)
k = k! (Cg,c,p)

k (4.32)

where the integration is taken over all the variables z and the variables (w̃1, . . . , w̃k)
.=

(wi )i∈c′ with c′
.= {1, . . . , l}\c and where Kg,z,c′ denotes the corresponding parts of Kg

as explained above. To see the well-definedness of each contribution to the sum, recall
that βp < 1, hence the inverse powers are locally integrable. Observe that the constant
Cg,c,p can be chosen independently of the permutation π (by taking e.g. the maximum
over permutations).

Repeating the argument for the +-combination w+
n,k(z

′, w′) that depends on the
primed variables, and putting together our three estimates (4.29), (4.31) and (4.32)
(for both primed and unprimed variables), we conclude: for n fixed, we find constants
independent of the choice of c (by taking the maxima, e.g. maxc Cg,c,p), such that (4.28)
is estimated by

2

n!
Cn

0 Cn
g,q

⌊ n
2 ⌋∑

k=0

(
n

k

)
(k!)2/p

((
n − k

n − 2k

))2/p

(CV d M
g )

n−2k
p (Cg,p)

k
p

︸ ︷︷ ︸
≤ (Cg,p)

n−k

,

where the factor
(

n−k
n−2k

)
arises from counting the number of terms in the sum (4.30)

and the factor 2 accounts for the fact that we also have to consider the contributions
with k > n/2. Observe that we have taken the p-th root from the Hölder estimate, also
for the constants estimating the Vandermonde- and the Cauchy-Determinant. The 2/p

power occurs because similar estimates are valid also for the primed variables and in
the end one can choose constants that are appropriate for both. The constant Cg,p is the

(p-th root of the) maximum of CV d M
g and Cg,p and by an appropriate choice of the test

function g can be made smaller than 1. Hence,

(Cg,p)
n−k ≤ (Cg,p)

⌈ n
2 ⌉ for any 0 ≤ k ≤ ⌊ n

2
⌋.

We now consider the sum of the factorials. Taking into account the 1/n! from the series

expansion and replacing
(

n−k
n−2k

)
by

(
n−k

k

)
, this is

⌊ n
2 ⌋∑

k=0

1

n!

(
n

k

)
(k!)2/p

((
n − k

k

))2/p

.
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Using the inequality
(

n
k

)
≤ 2n for the binomial coefficients and the fact that (k!)2 ≤ n!

for k ≤ n
2

, we can estimate the above expression by

⌊ n
2
⌋

(n!)1−1/p

(
2

2+p
p

)n

.

We therefore find an estimate of the form

· · · ≤
2⌊ n

2
⌋

(n!)1−1/p

(
2

2+p
p C0Cg,q

)n

(Cg,p)
⌈ n

2 ⌉

and deduce that there is a constant C = C(g, p), such that

· · · ≤
⌊ n

2
⌋Cnλn

(n!)1−1/p
.

Note that the dependence on λ enters via C0 = λ/2�. ⊓⊔

Observe that the constant in the estimate above is in general not smaller than 1.
However, the factorial in the denominator dominates both this power and the term linear
in n in the enumerator (use e.g. Stirling’s formula) and we deduce the following result:

Corollary 7. For an appropriate choice of the IR-cutoff function g in the interaction

V , the expectation value of the S-matrix in a coherent state ωϕ,Hv , for every ϕ ∈ E , is

summable for β < 1, i.e. in the UV-finite regime.

Proof. From Theorem 6 follows that the S matrix is summable for ωϕ,H and H differs
from Hv by a smooth function that can be absorbed into the redefinition of F . We can
then choose the cutoff g such that the support of F is sufficiently small (as measured
in the units of the scale parameter �) and use the same estimates as in the proof of
Theorem 6. ⊓⊔

The above result guarantees the pointwise convergence of αHv ◦ S ◦ α−1
Hv

(λV ) (i.e.
the S-matrix twisted by αHv ) as a functional on E . The pointwise convergence of all the
functional derivatives follows from the fact that the l-th derivative of the vertex operator
Va( f ) in the direction of ψ ∈ E is given by (ia)l Va( f ψ), so one can use the same
estimates as in Theorem 6 to obtain bounds on the expressions of the form

〈
δl

δϕl T
H

n

(
V⊗k

a ⊗ V⊗n−k
−a

)
, ψ⊗l

〉
(ϕ)

and the convergence of the formal S-matrix in the topology discussed at the end of Sect. 2
follows.

Let us now discuss another possible choice of a state for the construction of the
S-matrix, which is closer to the Euclidean setting. As proposed e.g. in [Wig67], one
can introduce an auxiliary mass m, compute vacuum expectation value of the time-
ordered products of the massive theory, and study the m → 0 limit. We will adopt this
strategy, also advocated by [Col75,Fro76], in our consideration to make comparison with
standard results from Euclidean theory. After constructing the time-ordered products
with the Feynman propagator of the massive theory, we will show that the mass zero
limit exists and that the mass zero time-ordered products satisfy certain bounds, which
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allow us to show the convergence of the formal S-matrix. Since the massless field in 2
dimensions does not possess a vacuum state, this limit is singular, leading in particular
to the vanishing of all odd contributions to the S-matrix. The final step, which we do not
take here, would be to take the adiabatic limit of the S-matrix by removing the cutoff
function form the interaction term.

Instead of directly calculating (4.25), we therefore study a massive counterpart of
auxiliary finite mass m (later to be taken to zero again). In the present framework (of
pAQFT), this is achieved by taking an appropriate massive Feynman propagator to
define the time ordered products. A first attempt is to take the massive propagator that
corresponds to Wm that is the standard Wightman 2-point function,

�F
m(z)

.=
1

2π
K0(mz) ,

where z =
√
−x2 + iǫ. However, as the limit m → 0 of this propagator does not exist,

we consider instead the propagator proposed in [BDF09, eqn. (97)] – which comprises
an additional part h,

h(z)
.=

1

2π
ln(m/μ) I0(mz)

with some real positive parameter μ and the modified Bessel function of the first kind
of order 0. The resulting propagator

�̃F
m(x) = �F

m(x) + h(z) =
1

2π
(K0(mz) + ln(m/μ)I0(mz)) , where z =

√
−x2 + iǫ

is well-defined for any mass m ≥ 0 and indeed, the limit m → 0 yields our massless
Feynman propagator up to an additive constant,

�̃F
0 = �F −

1

2π
ln(μ/2) + γ ,

where γ is the Euler constant. Since h is smooth, we can use it to define an equivalence
relation between the two time ordered products w.r.t. �F

m and �̃F
m . Let Hm = �F

m −
i
2
(�R

m + �A
m) with the corresponding massive advanced and retarded propagators. The

S-matrix of the massive theory is

Sm(λ :V :) = α−1
Hm

∞∑

n=0

1
n! (

iλ
�

)n
T

Hm
n (V⊗n).

We take the vacuum expectation value of Sm(λ :V :) according to (2.11) in the state given
by

ωϕ,Hm (A) = αHm (A)(ϕ) ,

To realize the modification of the Feynman propagator, we change the prescription of
normal ordering and define new normal ordered operators as

:A: .= α−1
Hm +h(A) , A ∈ Fμc[[�]].

Note that (set μ = 1)

α−1
h (eia�x )(ϕ) = e

�

4π
a2 ln(m)+iaϕ(x) = m

�

4π
a2+iaϕ(x) , (4.33)
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where �x is the evaluation functional (i.e. �x (ϕ) = ϕ(x)).
Hence we compute

ωϕ,Hm (Sm(λ :V :)) =
∞∑

n=0

1
n! (

iλ
�

)n
T

Hm
n ((α−1

h V )⊗n) ,

and ultimately, we want to take the limit

lim
m→0

ωϕ,Hm (Sm(λ :V :)).

Using the formulae for the time ordering (2.14) and (2.16) and the explicit form of �F
m ,

as well as the explicit form (4.33) of the equivalence map α−1
h acting on exponentials,

we find

T
Hm

n

(
α−1

h (Va1)⊗ · · · ⊗ α−1
h (Van )

)
(g⊗n)

=
∫

ei
∑

i ai ϕ(xi ) m
�

4π

∑
i a2

i e
− �

2π

∑
i< j ai a j K0(mzi j ) f (x1) . . . f (xn)dx

where dx
.= dx1 . . . dxn , and zi j =

√
−(xi − x j )2 + iǫ, and where the minus sign in the

exponential involving the Feynman propagator K0 is i2 from the functional derivative
acting on the vertex operators. Our auxiliary mass m being arbitrarily small and all
arguments xi − x j being bounded by the support properties of our test functions g, we
now use the expansion for K0 for small argument, K0(mz) = −(ln(mz/2) + γ )I0(mz),

I0(mz) = 1 + a power series in mz starting with a quadratic term,

to rewrite the Feynman propagator �F
m . We then find, with zi and zi j as above,

T
Hm

n

(
α−1

h (Va1)⊗ · · · ⊗ α−1
h (Van )

)
(g⊗n)

=
∫

ei
∑

i ai ϕ(xi ) m
�

4π

∑
i a2

i

× e
�

2π

∑
i< j ai a j (ln(mzi j /2)+γ )I0(mzi j )g(x1) . . . g(xn)dx

=
∫

ei
∑

i ai ϕ(xi ) m
�

4π

(∑
i a2

i +2
∑

i< j ai a j I0(mzi j )
)

× e
�

2π

∑
i< j ai a j (ln(zi j /2)+γ )I0(mzi j )g(x1) . . . g(xn)dx .

Since I0(mz)→ 1 in the limit m → 0, only those terms where
∑

i a2
i + 2

∑
i< j ai a j =

(a1 + · · · + an)2 = 0 survive. In particular, all the odd n contributions vanish.
The remaining terms are then of the form

T
H

n

(
Va1 ⊗ · · · ⊗ Van

)
( f ⊗n)

=
∫

ei(a1ϕ(x1)+···+anϕ(xn))e
−�

∑
i< j ai a j �F (xi ,x j )g(x1) . . . g(xn)dx

with n even,
∑

i ai = 0 and with our Feynman propagator �F from (4.24). Hence, this
is a special case of (4.25). Thus, we recover the following well-known result on the
summability of the S-matrix in the vacuum state as a special case of our main estimate.
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Remark 8. The estimate in Theorem 6 is improved if we consider the expectation value
in the singular state obtained by the limit limm→0 ωϕ,Hm (Sm(λ :V :)). In this case, the
only non-vanishing contributions occur for even n and k = l = n/2, and the matrix D

is just the Cauchy matrix with no Vandermonde determinants present. Hence, exactly as
in [Fro76], no restriction on the support of the test function g is necessary. We expect
that a similar result can be obtained also by choosing an appropriate class of Hadamard
states.

5. Interacting Fields

In the framework of pAQFT interacting fields are constructed with the use of the Bogoli-
ubov formula [BS59,DF01a] (see also [Rej16] for a review)

FI
.= −i�

d

dt
S(λ :V :)⋆−1 ⋆ S(λ :V :+t :F :)

∣∣∣
t=0

,

where F is a classical observables (a functional in Fμc). This formula has to be under-
stood as a formal power series in λ

FI =
n∑

0

λn

n!
Rn(:V :⊗n, :F :) (5.34)

and coefficients of this series are called retarded products and are given by

Rn(:V :⊗n, F) =
(

i
�

)n
n∑

k=0

(n

k

)
(−1)k

T̄k(:V :⊗k) ⋆ Tn−k+1(:V :⊗(n−k) ⊗ :F :) , (5.35)

where T̄k are the antichronological products defined as the coefficients in the expansion
of the inverse (in the sense of formal power series) S-matrix, i.e.

S(λ :V :)⋆−1 =
∞∑

n=0

1
n!

(−iλ
�

)n
T̄n(:V :⊗n).

In the standard Epstein-Glaser construction, the antichronological products are con-
structed inductively, together with the time ordered products. The prove of the induction
step relies on the fact that one can perform the causal split of relevant distributions
[Sch95], or find appropriate distributional extensions [Ste71]. Here, however, we can
use the “naive” split of the causal propagator, obtained by multiplying with the Heaviside
theta distributions. It remains to prove that all the expressions obtained in this way are
well defined. This is not entirely obvious (would in fact fail in higher dimensions), so
we will write these expressions down explicitly.

Recall that the anti Feynman propagator is defined by �AF = −i�D + H = �F,

�AF(t, x) = i
4
(θ(t − |x|) + θ(−t − |x|))− 1

4π
(ln |t + x| + ln |t − x|)

= + i
4
θ(t2 − |x|2)− 1

4π
ln |t2 − x2| (5.36)

We will use the following identity, which we prove in the appendix. Let �D denote the
Dirac propagator (2.12) which defines the time ordering. Then for n ≥ 0, we have

2n�D(x)n = θ(t)�(x)n + θ(−t)�(−x)n (5.37)
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where � denotes the causal propagator (3.17), which is a sum of two Heaviside functions.
It follows – as in the calculation leading to (3.22) – that the time ordered product of

2 vertex operators satisfies (in the sense of formal integral kernels)

αH (:Va1 :(x1) ·T :Va2 :(x2)) = eia1ϕ(x1)+ia2ϕ(x2) e−ia1a2�D(x1−x2)−a1a2 H(x1,x2)

(1.40)= eia1ϕ(x1)+ia2ϕ(x2)−a1a2 H(x1,x2)
(
θ(τ12) e−

i
2 a1a2�(x1−x2) + θ(−τ12)) e−

i
2 a1a2�(x2−x1)

)

= αH

(
:Va1 :(x1) ⋆ :Va2 :(x2)θ(τ12) + :Va2 :(x2) ⋆ :Va1 :(x1)θ(−τ12)

)
.

Contrary to the typical situation in higher dimensional models [Sch95], the products of
distributions in the above formula are well defined and no renormalization is needed.
This generalizes to k-fold time-ordered products.

αH (:Va1 :(x1)·T . . .·T :Vak
:(xk))=

∑

σ∈Sk

Vaσ(1)
(xσ(1))⋆H · · ·⋆H Vaσ(k)

(xσ(k))

n−1∏

i=1

θ(τσi σi+1
),

(5.38)
where Sk is the group of permutations of k elements. Using the classic argument, we
see that the antichronological product is the same, up to the order of the arguments
in the Heaviside function. Now, we apply again the identity (5.37) and see that for
V = 1

2
(Va + V−a) (which is real),

αH ◦ T̄n(:V :(x1)⊗ · · · ⊗ :V :(xn))

= V (x1) ·TH . . . ·TH V (xn) = V (x1) ·TH
. . . ·TH

V (xn) ,

where, in the second step, we used that H is real and where ·TH
is defined by the

exponential formula

F ·TH
G

.= μ ◦ e�DAF (F ⊗ G) , DAF(F ⊗ G) =
〈
�AF,

δF

δϕ
⊗

δG

δϕ

〉
.

Hence

αH ◦ S(λ :V :)⋆−1 = e
−iλV/�

TH
.

We now apply Bogolubov’s formula to the case where F = ∂μ�( f ) (a component of
the current) i.e. ∂μ�( f )(ϕ) =

∫
∂μϕ(x) f (x)dx . In order to apply (5.35), first we need

to compute the l + 1-fold time-ordered products of V⊗l with ∂μ�( f ). Using formula
(2.16) we obtain

αH ◦ Tl+1(:V :⊗l ⊗ ∂μ�( f )) = μ ◦ e
�

∑
1≤i< j≤l D

i j
F ◦ e�

∑l
i=1 Di l+1

F (V⊗l ⊗ ∂μ�( f ))

= T
H

l (V⊗l) · ∂μ�( f ) + l� T
H

l

(
V⊗l−1 ⊗

∫
δV

δϕ(x)
∂μ�F(x, y) f (y)

)
(5.39)

where D
i j
F

.= 〈�F, δ2

δϕi δϕ j
〉. It follows that (5.35) can be written as a sum of two terms.

Rn(:V :⊗n, F) = Jn(:V :⊗n, F) + Mn(:V :⊗n, F) ,

so FI = J (:V :, F) + M(:V :, F). J (:V :, F) is easily computed using the following
lemma.
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Lemma 9. Let K be an integral kernel and let A, B, C be smooth functionals, with C

linear, then

μ ◦ e�DK (A ⊗ B · C) = μ ◦ e�DK (A ⊗ B) · C + μ ◦ e�DK

(〈
A(1), K C (1)

〉
⊗ B

)
,

where A(1), C (1) are functional derivatives.

Proof. The result follows directly from the Leibniz rule. ⊓⊔

The first contribution to J (:V :, F) is just ∂μ�( f ), since in our case A is the ⋆H inverse
of B. The second contribution can be expanded into time-ordered and antichronological
products and using the explicit expression for the vertex operators we obtain a sum of
terms of the form

i�

l∑

j=1

a j T̄
H

l

(
Va1( f1)⊗ · · · ⊗

∫
Va j

(x j ) f j (x j )∂μW (x j , y) f (y)⊗ · · · ⊗ Val
( fl)

)
,

which are then ⋆-multiplied from the right with appropriate time-ordered products of
vertex operators.

As for M(:V :, F), we also use the explicit form of the vertex operators and obtain

i�

l∑

j=1

a jT
H

l

(
Va1( f1)⊗ · · · ⊗

∫
Va j

(x j ) f j (x j )∂μ�F(x j , y) f (y)⊗ · · · ⊗ Val
( fl)

)
,

again, ⋆-multiplied from the left with anti chronological products.

We see, in particular, that each contribution to Rn in formula (5.35) is proportional
to products of n vertex operators.

We now approach the issue of convergence for the interacting fields again from two
perspectives: the weak limit in a Hadamard state and the m → 0 limit of massive vacuum
expectation value.

We start with the latter perspective and introduce an auxiliary finite mass m, replace
all the propagators in the formula for the interacting field by �F

m and Wm respectively, and

change the normal-ordering prescription by applying α−1
h to the vertex operators. The

resulting formulae differ from those for the S-matrix only by the occurrence of factors
∂μ�F

m and ∂μWm . These, however, have well-defined limits for m → 0. Therefore, we
can conclude, as in Sect. 4, that only the terms with

∑n
i=1 ai = 0 contribute in the

limit. Observe that this line of argument is possible for the current ∂μ�x , but would

not work for �x itself as �F
m and Wm are not well-defined in the limit m → 0. This is

again a consequence of the well known infrared problem of massless scalar fields in 2
dimensional Minkowski spacetime.

We can now proceed as in Theorem 6, taking into account the extra factors of ∂μ�F∗ f

and ∂μW ∗ f . By a standard result (see e.g. [Fol92, §9.2]), these convolutions are actually
smooth functions. Since they are then multiplied with a test function, the result is again
a test function.

Finally, note that �AF, �F, W only differ in the signs in front of the Heaviside
functions. The latter did not enter in the estimate in Theorem 6, so we conclude that the
same estimate as in Theorem 6 holds for (5.35). To conclude, we have shown that the
formal power series limm→0 ωϕ,Hm (∂μ�( f )I ) is summable.
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Now we briefly discuss the other perspective which is to compute the expectation
values of interacting fields in a Hadamard state. Again, use the estimates from Theorem 6
to conclude that ωϕ,Hv (∂μ�( f )I ) is summable if we choose f and the cutoff for the
interaction V appropriately. Contrary to the situation with the auxiliary mass and the
limit m → 0, this is in fact, true even for the interacting field, ωϕ,Hv (�( f )I ), since the
Hadamard state is better behaved than the singular vacuum state. Our hope is that one
can use these results to construct the net of interacting fields, as outlined, for example
in section 4.3 of [FR15b], but this would require a careful choice of test functions and
taking the algebraic adiabatic limit.

6. Conclusion and Outlook

We have proven the convergence of the vacuum expectation value of the Epstein Glaser
S-matrix and the interacting current in the finite regime of the Sine-Gordon model. To
our knowledge, this is the first such proof done directly in the Lorentzian signature.

The main input into the proof of the main estimate (Theorem 6) was the fact that
the retarded propagator �R is idempotent and bounded, and that the Hadamard function
H is a logarithm so that exponentials of H simply give rational functions. Just like in
the earlier investigations [Fro76,DH93], this ties the method of proof to 2-dimensional
theories.

We expect that it should be possible to apply the above arguments directly to 2-
dimensional curved spacetimes where the 2-point function is known explicitly. A slightly
more ambitious goal is to extend our analysis to the superrenormalizable case with
1 ≤ β < 2, extending the ideas of [DH93].

Most importantly, we believe that the net of interacting fields should be constructable.
Our result should open up the possibility to clarify a number of questions, such as the
direct comparison with the (Wick rotated) Euclidean theory, and perhaps even on the
factorizability of the S-matrix.
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tingen and Oberwolfach. We also thank Klaus Fredenhagen for useful comments on an earlier version of the
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A. Calculations

Proof of (3.18)

We use the following identities

lim
εց0

ln(x + iε) = ln(|x |)− iπθ(x) lim
εց0

ln(x − iε) = ln(|x |) + iπθ(x)

and (using x2 = t2 − x2)

− 1
4π

ln(−x2 + iεt) = − 1
4π

ln( −t2 + x2 + iεt︸ ︷︷ ︸
(x+(t−iε))(x−(t−iε))

)

http://creativecommons.org/licenses/by/4.0/
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= − 1
4π

(
ln(x + (t − iε)) + ln(x − (t − iε))

)

= − 1
4π

(
ln(x + t − iε) + ln(x − t + iε)

)

which in the limit ε ց 0 yields

→ − 1
4π

(
ln(|x + t |) + iπθ(x + t) + ln(|x − t |)− iπθ(x − t)

)

= − 1
4π

(
ln(|x + t |) + ln(|x − t |)

)
− i

4

(
θ(x + t)− θ(x − t)

)

= − 1
4π

( )
− i

4

(
θ(t − |x|)− θ(−t − |x|)

)

In the last step, we have used the fact that

θ(x + t)− θ(x − t) =

⎧
⎨
⎩

1 t ≥ −x and t ≥ x

−1 t ≤ x and t ≤ −x

0 otherwise
=

⎧
⎨
⎩

1 t ≥ |x|
−1 t ≤ −|x|
0 otherwise

= θ(t − |x|)− θ(−t − |x|)

A similar computation shows that

θ(t − |x|)− θ(−t − |x|) = θ(t2 − x2) sgnt

and

θ(t − |x|) + θ(−t − |x|) = θ(t2 − x2).

Hence the 2-point function can be expressed as

W (x) = − 1
4π

ln(−x2 + iεt) = − 1
4π

ln(|x2|) + iπθ(t2 − x2) sgnt.

A similar reasoning shows that

− 1
4π

ln(x2 − iǫ) = − 1
4π

ln(|x2|)− i
4
θ(t2 − x2)

= − 1
4π

ln(|x2|)− + i
2
(− 1

2
θ(t − |x|)− 1

2
θ(−t − |x|))

= H + i
2
(�R + �A) = �F.

Proof of (5.37)
First note that �(x) = �R−�A = − 1

2
(θ(t−|x|)−θ(−t−|x|)) = − 1

2
sgn(t)θ(t2−x2),

and since � is the antisymmetric part of the 2-point function, we deduce

θ(t)�(x) + θ(−t)�(−x) = (θ(t)− θ(−t))�(x) = sgn(t)
(
− 1

2

)
sgn(t)θ(t2 − x2)

= − 1
2
θ(t2 − x x2) = − 1

2
(θ(t − |x|) + θ(−t − |x|)) = 2�D

Moreover, we have for n ≥ 0,

θ(t)�(x)n + θ(−t)�(−x)n =
(
− 1

2

)n (
θ(t) + (−1)nθ(−t)

)
sgn(t)nθ(t2 − x2)n

=

⎧
⎨
⎩

(
− 1

2

)n
θ(t2 − x2) n even

(
− 1

2

)n
sgn(t)n+1θ(t2 − x2) n odd

= (2�D(x))n (1.40)

where in the second equality, for n odd, we used (θ(t) + (−1)nθ(−t))sgn(t)n =
sgn(t)n+1, and in the last line, we used − 1

2
θ(t2 − x2) = 2�D and θ = θn .
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