456 research outputs found

    Spatially-Variant Directional Mathematical Morphology Operators Based on a Diffused Average Squared Gradient Field

    No full text
    International audienceThis paper proposes an approach for mathematical morphology operators whose structuring element can locally adapt its orientation across the pixels of the image. The orientation at each pixel is extracted by means of a diffusion process of the average squared gradient field. The resulting vector field, the average squared gradient vector flow, extends the orientation information from the edges of the objects to the homogeneous areas of the image. The provided orientation field is then used to perform a spatially variant filtering with a linear structuring element. Results of erosion, dilation, opening and closing spatially-variant on binary images prove the validity of this theoretical sound and novel approach

    Updating the Food-Based Dietary Guidelines for the Spanish Population: The Spanish Society of Community Nutrition (SENC) Proposal

    Get PDF
    Diet-related risk factors and physical inactivity are among the leading risk factors for disability and are responsible for a large proportion of the burden of chronic non-communicable diseases. Food-based dietary guidelines (FBDGs) are useful tools for nutrition policies and public health strategies to promote healthier eating and physical activity. In this paper, we discuss the process followed in developing the dietary guidelines for the Spanish population by the Spanish Society of Community Nutrition (SENC) and further explain the collaboration with primary healthcare practitioners as presented in the context of the NUTRIMAD 2018 international congress of SENC. From a health in all policies approach, SENC convened a group of experts in nutrition and public health to review the evidence on diet-health, nutrient intake and food consumption in the Spanish population, as well as food preparation, determinants and impact of diet on environmental sustainability. The collaborative group drafted the document and designed the graphic icon, which was then subject to a consultation process, discussion, and qualitative evaluation. Next, a collaborative group was established to plan a dissemination strategy, involving delegates from all the primary healthcare scientific societies in Spain. A product of this collaboration was the release of an attractive, easy-to-understand publication

    Global adoption of robotic technology into neurosurgical practice and research

    Get PDF
    Recent technological advancements have led to the development and implementation of robotic surgery in several specialties, including neurosurgery. Our aim was to carry out a worldwide survey among neurosurgeons to assess the adoption of and attitude toward robotic technology in the neurosurgical operating room and to identify factors associated with use of robotic technology. The online survey was made up of nine or ten compulsory questions and was distributed via the European Association of the Neurosurgical Societies (EANS) and the Congress of Neurological Surgeons (CNS) in February and March 2018. From a total of 7280 neurosurgeons who were sent the survey, we received 406 answers, corresponding to a response rate of 5.6%, mostly from Europe and North America. Overall, 197 neurosurgeons (48.5%) reported having used robotic technology in clinical practice. The highest rates of adoption of robotics were observed for Europe (54%) and North America (51%). Apart from geographical region, only age under 30, female gender, and absence of a non-academic setting were significantly associated with clinical use of robotics. The Mazor family (32%) and ROSA (26%) robots were most commonly reported among robot users. Our study provides a worldwide overview of neurosurgical adoption of robotic technology. Almost half of the surveyed neurosurgeons reported having clinical experience with at least one robotic system. Ongoing and future trials should aim to clarify superiority or non-inferiority of neurosurgical robotic applications and balance these potential benefits with considerations on acquisition and maintenance costs.Scientific Assessment and Innovation in Neurosurgical Treatment Strategie

    Interconexão entre células solares de perovskita e silício em dispositivos monolíticos Tandem de 2 terminais : estado da arte e desenvolvimentos futuros

    Get PDF
    CIES2020 - XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia SolarRESUMO: A formação de uma junção de efeito túnel é um fator chave para atingir altas eficiências em células solares tandem. As técnicas reportadas para a formação de junções de silício em dispositivos monolíticos tandem de 2 terminais como a Deposição Química de Vapor Assistida por Plasma (PECVD) ou a Implantação Iónica possuem restrições do ponto de vista de custos ou de aplicação ao nível industrial. A alternativa em estudo assenta na aplicação da técnica de dopagem por laser para a fabricação de junções de efeito túnel de silício com elevado grau de cristalinidade. Para isso desenvolveu-se um setup que recorre a um laser pulsado com emissão na região do infravermelho Nd:YAG (1064nm) para fusão superficial do silício e à utilização de oxicloreto de fósforo (POCl3) como fonte de dopante. O laser está acoplado a uma cabeça galvanométrica com lente f-teta de forma a permitir redireccionar e focar o feixe na superfície da amostra. O processo em causa possui várias vantagens face a outros já utilizados, uma vez que é facilmente escalável, rápido, com potencial baixo custo de processamento e eficiente do ponto de vista energético.ABSTRACT: The formation of a junction with tunneling effect is a key factor to achieve high efficiencies in tandem solar cells. The techniques reported for the formation of silicon junctions in 2-terminal tandem monolithic devices such as Plasma Assisted Vapor Chemical Deposition (PECVD) or Ionic Implantation have cost and application constrains at the industrial level. The alternative under study is based on the application of the laser doping technique for the manufacture of a silicon tunnel junction with a high degree of crystallinity. For this, a setup was developed using a pulsed laser with emission in the infrared region Nd:YAG (1064nm) for shallow surface melting of the silicon wafer and the use of phosphorus oxychloride (POCl3) as a source of dopant. The laser is coupled to a galvanometric head with a f-theta lens to allow redirecting and focusing the beam on the surface of the sample. This process has several advantages compared to others, since it is easily scalable, fast, energy efficient while presenting potentially low processing costs.info:eu-repo/semantics/publishedVersio

    In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells

    Get PDF
    This work was supported by CaixaImpulse (CI18-00017;FuGe) to S.R-P. RT-R. is supported by a postdoctoral fellowship from the Asociación Española Contra el Cáncer (AECC). J.C.S. is supported by the Spanish Cell Therapy cooperative research network (TERCEL)(RD16/0011/0011). P.M. also acknowledges the financial support from the Obra Social La Caixa-Fundaciò Josep Carreras. P.M. is an investigator of the Spanish Cell Therapy cooperative research network (TERCEL). A.M.C. acknowledges funding fromXarxa de Bancs de Tumors de Catalunya (XBTC; sponsored by Pla Director d'Oncologia de Catalunya).Fusion oncogenes (FOs) are common in many cancer types and are powerful drivers of tumor development. Because their expression is exclusive to cancer cells and their elimination induces cell apoptosis in FO-driven cancers, FOs are attractive therapeutic targets. However, specifically targeting the resulting chimeric products is challenging. Based on CRISPR/Cas9 technology, here we devise a simple, efficient and non-patient-specific gene-editing strategy through targeting of two introns of the genes involved in the rearrangement, allowing for robust disruption of the FO specifically in cancer cells. As a proof-of-concept of its potential, we demonstrate the efficacy of intron-based targeting of transcription factors or tyrosine kinase FOs in reducing tumor burden/mortality in in vivo models. The FO targeting approach presented here might open new horizons for the selective elimination of cancer cells

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation

    Cognitive clusters in first-episode psychosis

    Get PDF
    Impairments in a broad range of cognitive domains have been consistently reported in some individuals with first-episode psychosis (FEP). Cognitive deficits can be observed during the prodromal stage. However, the course of cognitive deficits is still unclear. The aim of this study was to identify cognitive subgroups over time and to compare their sociodemographic, clinical and functional profiles. A total of 114 patients with Schizophrenia Spectrum Disorders were included in the present study. We assessed subjects through psychiatric scales and eight neuropsychological tests at baseline and at two-year follow-up visit. We performed the Partition Around Medoids algorithm with all cognitive variables. Furthermore, we performed a logistic regression to identify the predictors related to the different cognitive clusters at follow-up. Two distinct subgroups were found: the first cluster characterized by cognitive impairment and a second cluster had relatively intact cognition in comparison with norms. Up to 54.7% of patients with cognitive deficits at baseline tended to improve during the first two years of treatment. Patients with intact cognition at follow-up had a higher socioeconomic status, later age of onset, lower negative symptoms and a higher cognitive reserve (CR) at baseline. CR and age of onset were the baseline variables that predicted cognitive impairment. This research allows us to obtain a better understanding of the heterogeneous profile of psychotic disorders. Identifying the characteristics of patients who will present a cognitive impairment could improve early detection and intervention. These results suggest that enhancing CR could contribute to improving the course of the illness. © 2021 Elsevier B.V

    Cognitive clusters in first-episode psychosis

    Get PDF
    Impairments in a broad range of cognitive domains have been consistently reported in some individuals with first-episode psychosis (FEP). Cognitive deficits can be observed during the prodromal stage. However, the course of cognitive deficits is still unclear. The aim of this study was to identify cognitive subgroups over time and to compare their sociodemographic, clinical and functional profiles. A total of 114 patients with Schizophrenia Spectrum Disorders were included in the present study. We assessed subjects through psychiatric scales and eight neuropsychological tests at baseline and at two-year follow-up visit. We performed the Partition Around Medoids algorithm with all cognitive variables. Furthermore, we performed a logistic regression to identify the predictors related to the different cognitive clusters at follow-up. Two distinct subgroups were found: the first cluster characterized by cognitive impairment and a second cluster had relatively intact cognition in comparison with norms. Up to 54.7% of patients with cognitive deficits at baseline tended to improve during the first two years of treatment. Patients with intact cognition at follow-up had a higher socioeconomic status, later age of onset, lower negative symptoms and a higher cognitive reserve (CR) at baseline. CR and age of onset were the baseline variables that predicted cognitive impairment. This research allows us to obtain a better understanding of the heterogeneous profile of psychotic disorders. Identifying the characteristics of patients who will present a cognitive impairment could improve early detection and intervention. These results suggest that enhancing CR could contribute to improving the course of the illness

    Thermodynamics and NMR studies on Duck, Heron and Human HBV encapsidation signals

    Get PDF
    Hepatitis B virus (HBV) replication is initiated by binding of its reverse transcriptase (P) to the apical stem-loop (AL) and primer loop (PL) of epsilon, a highly conserved RNA element at the 5′-end of the RNA pregenome. Mutation studies on duck/heron and human in vitro systems have shown similarities but also differences between their P–epsilon interaction. Here, NMR and UV thermodynamic data on AL (and PL) from these three species are presented. The stabilities of the duck and heron ALs were found to be similar, and much lower than that of human. NMR data show that this low stability stems from an 11-nt internal bulge destabilizing the stem of heron AL. In duck, although structured at low temperature, this region also forms a weak point as its imino resonances broaden to disappearance between 30 and 35°C well below the overall AL melting temperature. Surprisingly, the duck- and heron ALs were both found to be capped by a stable well-structured UGUU tetraloop. All avian ALs are expected to adhere to this because of their conserved sequence. Duck PL is stable and structured and, in view of sequence similarities, the same is expected for heron - and human PL
    corecore