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Abstract
Recent technological advancements have led to the development and implementation of robotic surgery in several specialties,
including neurosurgery. Our aimwas to carry out a worldwide survey among neurosurgeons to assess the adoption of and attitude
toward robotic technology in the neurosurgical operating room and to identify factors associated with use of robotic technology.
The online survey was made up of nine or ten compulsory questions and was distributed via the European Association of the
Neurosurgical Societies (EANS) and the Congress of Neurological Surgeons (CNS) in February andMarch 2018. From a total of
7280 neurosurgeons who were sent the survey, we received 406 answers, corresponding to a response rate of 5.6%, mostly from
Europe and North America. Overall, 197 neurosurgeons (48.5%) reported having used robotic technology in clinical practice.
The highest rates of adoption of robotics were observed for Europe (54%) and North America (51%). Apart from geographical
region, only age under 30, female gender, and absence of a non-academic setting were significantly associated with clinical use of
robotics. The Mazor family (32%) and ROSA (26%) robots were most commonly reported among robot users. Our study
provides a worldwide overview of neurosurgical adoption of robotic technology. Almost half of the surveyed neurosurgeons
reported having clinical experience with at least one robotic system. Ongoing and future trials should aim to clarify superiority or
non-inferiority of neurosurgical robotic applications and balance these potential benefits with considerations on acquisition and
maintenance costs.

Keywords Robotics . Robotic guidance . Technology . Neurosurgery . Global .Worldwide survey

Introduction

Neurosurgery is one of the most complex and delicate surgical
specialties because of the limited maneuverability determined

by the small surgical fields of modern minimally invasive
approaches. Furthermore, high-precision standards are re-
quired to obtain maximal therapeutic benefits without
compromising the function of noble anatomical structures of
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the central and peripheral nervous system [1]. Recent techno-
logical advancements have led to the development and imple-
mentation of robotic surgery in several specialties including
general surgery, urology, gynecology, endocrine surgery, and
orthopedics [2]. In this regard, neurosurgery—despite lagging
behind the other specialties in terms of robotic applications
because of its very technical peculiarities—constitutes no ex-
ception [1], and the practical application of robotic surgery is
increasingly reported in the medical literature for the treatment
of adult cranial [3], spinal [3–5], and pediatric pathologies [6].

Another reason for the rising importance of robotic tech-
nology in surgery is the advent of artificial intelligence in
medicine. These advances have paved the way for the devel-
opment of concepts such as the smart operating room, a futur-
istic surgical theater where human intervention is minimal,
information is processed by smart objects, and decisions are
made in an automated way. In such a setting, robots will have
a major role not only in carrying out the surgical steps accord-
ing to protocol but also as an intrinsically intelligent mind
which can assess the environment and adjust accordingly in
real time, or take appropriate actions to prevent errors [7, 8].

Even robotic technologies that have been widely applied in
other specialties have often demonstrated less than satisfying
clinical performance. In light of the increasing appeal that
robotics is gaining in the neurosurgical field, its application
in routine clinical practice needs to be solidly grounded on
evidence, with proof of superiority or non-inferiority com-
pared with traditional neurosurgical interventions [9].
Moreover, in addition to considerations of technical feasibility
and possible impact on outcome improvement, the implemen-
tation of robotic technology has to take into account also the
financial repercussions on the healthcare system inherent to
the high acquisition and maintenance costs [10].

While other surveys have tried to describe the status of
worldwide applications of new neurosurgical technologies
like neuronavigation [11], and despite the encouraging appar-
ent trend in increased applications of neurosurgical robotics
with the resulting possible clinical benefit and research ad-
vancement, global data on the adoption of robotics in neuro-
surgical practice and research is currently lacking.

Our aim was to carry out a worldwide survey among neu-
rosurgeons to assess the adoption of and attitude toward ro-
botic technology in the neurosurgical operating room, and to
identify factors associated with use of robotic technology.

Materials and methods

Sample population

The survey was distributed via the European Association of
the Neurosurgical Societies (EANS) and Congress of
Neurological Surgeons (CNS) in January, February, and

March 2019. The EANS is the professional organization that
represents European neurosurgeons. An e-mail invitation was
sent through the EANS newsletter on January 28, 2019.
Furthermore, the membership database of the CNS was
searched for e-mail addresses of active members and congress
attendants. The CNS is a professional, United States-based
(US) organization that represents neurosurgeons worldwide.
At the time of the search, the database contained 9007 mem-
bers from all continents, a subset of which had functioning e-
mail addresses. The survey was hosted by SurveyMonkey
(San Matea, CA (USA)) and sent by e-mail together with an
invitation letter. Reminders were sent after 2 and 4 weeks to
non-responders to increase the response rate. To limit answers
to unique site visitors, each e-mail address was only allowed
to fill in the survey once. All answers were captured anony-
mously. No incentives were provided.

Survey content

The online survey was made up of nine or ten compulsory
questions, depending on the participants’ choice of whether
they had or had not used robotic technology in their neurosur-
gical practice. A complete overview of survey questions and
response options is provided in Table 1. The order in which
potential reasons for use/non-use are displayed was random-
ized to avoid systematic bias. The definition of robotic tech-
nologies that was provided within the survey was: “Any form
of robotic assistance in neurosurgery, including but not limit-
ed to cooperative robot arms and modules (“cobots“) assisting
in surgical maneuvers such as pedicle screw placement, en-
doscopy, radiosurgery, microscopy, biopsy, or DBS electrode
placement, etc.” The survey was developed by the authors
based on prior, similar surveys carried out in a similar popu-
lation. This report was constructed according to the Checklist
for Reporting Results of Internet E-Surveys (CHERRIES)
guidelines [12].

Statistical analysis

Continuous variables are given as means ± standard devia-
tions (SD), whereas categorical variables are reported as num-
bers (percentages). Countries were grouped by region
(Europe/North America/Latin America/Asia & Pacific/
Middle East/Africa) according to a previous worldwide sur-
vey by Härtl et al. [11]. Fisher’s exact test was applied to
compare implementation incidence of robotics among re-
gions. By use of a multivariate logistic regression model, we
identified independent predictors of adoption of robotic tech-
nology into clinical practice and research, respectively. The
importance of reasons for use or non-use of robotics was com-
pared among regions using the Kruskal-Wallis H tests. When
calculating the ratio of respondents who had applied robotic
technology in research, we incorporated both respondents
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who had never used robotics in their research and those who
do not participate in medical research into the denominator. R
version 3.5.2 (The R Foundation for Statistical Computing,
Vienna, Austria) was applied for all analyses, and the Type I
error rate was defined as p ≤ 0.05 for two-tailed tests.

Results

Response rate and respondent characteristics

From a total of 7280 neurosurgeons who were sent the survey,
we received 406 answers, corresponding to a response rate of
5.6%. Detailed characteristics of the respondents are given in
Table 2. The majority of respondents were in the 30–40 years
age group (33%), and 88.7% of the answers were from male
participants. Most of surveyed neurosurgeons were special-
ized in spinal surgery (34.5%). As far as the work setting

was concerned, more than two-thirds of the neurosurgeons
were practicing in an academic hospital (67.7%), followed
by non-academic hospital (15.5%), private practice (15%),
and other settings (1.7%). We also sought to describe the level
of experience of the surveyed population. Participants were
mostly board-certified/attending neurosurgeons (58.9%),
while residents (20%), chairs of department (10.8%), fellows
(4.7%), medical students (3.2%), and others (2.5%) were less
represented. Geographic distribution of the answers was
skewed in favor of North America (70.4%) and Europe
(17.2%), while less answers were received from surgeons
from Asia and Pacific (5.4%), Latin America (3.9%), Middle
East (2.5%), and Africa (0.5%).

Robotics in clinical practice and research

When inquired about the use of robots in neurosurgical clin-
ical practice and research, 48.5% and 61.5% of the surveyed

Table 1 Elements contained within the survey. Depending on the participants’ choice, nine or ten questions were displayed

Question Response options Type

What is your primary subspecialty? Spine; neurovascular, neurooncology, trauma,
epilepsy, pediatric, peripheral nerve,
neurointensive care, functional; other

Single choice; free text

What setting do you primarily practice in? Academic hospital, non-academic hospital,
private practice, other

Single choice; free text

What is your level of experience? Medical student, resident, fellow,
board-certified/attending, chairperson,
other

Single choice; free text

What is your gender? Male, female Single choice

What age group are you in? < 30 years, 30–40 years, 40–50 years,
50–60 years, > 60 years

Single choice

What country are you currently based in? List Single choice

In your clinical practice, have you ever made use
of robotic technology?

Yes, No Single choice

If yes

Which robotic device(s) do you use/have you
used?

– Free text

Please rate the importance of the following reasons for using robotic assistance from 1 to 4, based on your own clinical experience

Improved cost-effectiveness 1 (Not important) to 4 (Highly important) Single choice

Time savings 1 (Not important) to 4 (Highly important) Single choice

Improved surgical outcome 1 (Not important) to 4 (Highly important) Single choice

Lower risk of complications 1 (Not important) to 4 (Highly important) Single choice

Attract patients and referrals/marketing 1 (Not important) to 4 (Highly important) Single choice

If no

Please rate the importance of the following reasons for not using robotic assistance from 1 to 4

Lack of published supporting evidence 1 (Not important) to 4 (Highly important) Single choice

Acquisition/maintenance costs 1 (Not important) to 4 (Highly important) Single choice

Difficulties with staff training/device education 1 (Not important) to 4 (Highly important) Single choice

Not personally convinced by their added value 1 (Not important) to 4 (Highly important) Single choice

No demand for robotic assistance/lack of ap-
plicable devices

1 (Not important) to 4 (Highly important) Single choice

In your research, have you ever made use of
robotic technology?

Yes, No, I do not engage in medical research Single choice
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population answered positively, respectively. Stratified by re-
gion (Table 3), use of robotic technology in clinical practice
was most common in Europe (54.3%) and North America
(51.4%), followed by Asia and Pacific (31.8%), Middle East
(20.0%), Latin America (18.8%), and Africa (0.0%). Figure 1
provides a graphical illustration of the worldwide clinical use

of robotics in neurosurgery. Respondents were also asked to
list which types of robots they had worked with (Table 4). The
most commonly used robotic devices were from the Mazor
family (32%), followed by the ROSA robot (26.4%). A high
proportion of the robot users did not identify the specific type
of robots that they had used (33.5%).

Predictors of robotics use

Multivariate logistic regression analysis was used to investi-
gate independent predictors of adoption of robotics into clin-
ical practice and research (Table 5). Tested variables included
age, gender, specialty, work setting, surgeon experience, and
geographic region of origin. The analysis revealed that after
adjustment for potential confounders, young surgeons (<
30 years) were more likely than those belonging to other age
ranges to have used robotic technology in clinical practice
(OR 2.55, CI 1.26–5.23, p = 0.010). Other relevant results
include the lower likelihood of male (OR 0.46, CI 0.21 to
0.96, p = 0.042) and non-academic neurosurgeons (OR 0.45,
CI 0.23–0.87, p = 0.019) to have clinically used robotic tech-
nology in neurosurgery. Also, surveyed surgeons from Asia
Pacific (OR 0.15, CI 0.03–0.54, p = 0.008) and Middle East
(OR 0.14, CI 0.02–0.57, p = 0.028) were significantly less
likely to implement robotics application in clinical practice
compared with North America as the reference category.
The only independent predictor of use of robotic technology
in clinical research was a European region of origin (OR 2.15,
CI 1.1–0.4.21, p = 0.025).

Attitudes toward robotic technology in neurosurgery

The surveyed population was asked to rate the importance of
the factors for and against the use of robotic technology in
neurosurgical clinical practice (Table 6). Among those sur-
geons implementing the use of robotic technology, the per-
ceived improved surgical outcome (3.3 ± 0.9) and marketing
considerations for augmentation of patient referrals (3.2 ± 0.9)
were rated the most important, followed by time savings (2.7
± 1.0), lower risk of complications (2.7 ± 1.0), and cost-
effectiveness (2.3 ± 1.0). Only for time savings, we identified
a significant difference in importance rating among the five
regions (Kruskal-Wallis test, p = 0.003)—time savings were
rated highly important in the Middle East and in Asia and
Pacific, while this potential advantage was only of minor im-
portance in Latin America.

Among those neurosurgeons who had never used robotics
in clinical practice, the most important factor prohibiting
adoption of robotics into clinical practice was the inherent
acquisition/maintenance costs (3.4 ± 0.9). Other consider-
ations played a lesser role in this choice. Of note, a statistically
significant imbalance was found among regions with respect
to difficulties with staff training and device education and also

Table 2 Basic demographics of the surveyed population

Parameter Value (n = 406)

Age group (years), n (%)

< 30 38 (9.4%)

30–40 134 (33.0%)

40–50 102 (25.1%)

50–60 66 (16.3%)

> 60 66 (16.3%)

Male gender, n (%) 360 (88.7%)

Subspecialty, n (%)

Spine 140 (34.5%)

Neuro-oncology 74 (18.2%)

Neurovascular 56 (13.8%)

Pediatric 38 (9.4%)

Functional 36 (8.9%)

Trauma 31 (7.6%)

Epilepsy 19 (4.7%)

Neurointensive care 4 (1.0%)

Skull base 5 (1.2%)

Peripheral nerve 2 (0.5%)

Other 1 (0.2%)

Work setting, n (%)

Academic hospital 275 (67.7%)

Non-academic hospital 63 (15.5%)

Private practice 61 (15.0%)

Other 7 (1.7%)

Level of experience, n (%)

Board-certified/attending 239 (58.9%)

Resident 81 (20.0%)

Chairperson 44 (10.8%)

Fellow 19 (4.7%)

Medical student 13 (3.2%)

Other 10 (2.5%)

Region, n (%)

North America 286 (70.4%)

Europe 70 (17.2%)

Asia Pacific 22 (5.4%)

Latin America 16 (3.9%)

Middle East 10 (2.5%)

Africa 2 (0.5%)

Use of robotic technology in clinical practice, n (%) 197 (48.5%)

Use of robotic technology in clinical research, n (%) 209 (61.5%)
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of personal convincement of the added value granted by the
implementation of robotics in surgical practice (Kruskal-
Wallis test, p = 0.030 and p = 0.008 respectively).

Discussion

Our survey addressed a geographically diverse cohort of neu-
rosurgeons at different levels of training. It is apparent that
robotic surgery seems to have gained wide acceptance in neu-
rosurgical practice as confirmed by the observation that al-
most half of the surveyed population have used robotic tech-
nology during neurosurgical procedures. Furthermore, around
one-fifth of the surveyed population appears to have engaged
in medical research using robotic technology. The

overwhelming majority of robotics users was to be found in
individuals under 40 years of age. Spinal surgery was the
subspecialty that most often applied robotics, followed by
neuro-oncologists, and cerebrovascular specialists. The most
commonly used devices were the Mazor family and ROSA
robots.

The proportion of neurosurgeons who reported having
used robotic technology in clinical practice was very high
and certainly higher than expected. Although, with recent
trends, these numbers are conceivable, there are some fac-
tors that may potentially have led to a higher proportion of
neurosurgeons reporting use of robotics in the surveyed
population. First, the survey was circulated among EANS/
CNS members and congress attendants, by way of which a
potentially more scientifically interested and academic pop-
ulation was selected for. As observed in our survey, aca-
demic neurosurgeons are far more likely to have had contact
with robotic surgery than their non-academic counterparts
are. Second, it is possible and conceivable that among the
population that was sent this survey, the surgeons with prior
experience with robotics were more interested in this topic
and therefore more likely to fill in a survey on robotic sur-
gery (response bias). Even though these potential biases
may have increased the proportion of neurosurgeons
reporting clinical use of robotic technology, our results
demonstrate that in recent years, robotics has seen broad
adoption into the neurosurgical operating rooms of particu-
larly Europe and North America.

After adjustment for potential confounders, no subspecialty
was found to be significantly associated with an increased or
decreased robotics use, neither in clinical practice nor in re-
search. This suggests that robotic technology has been rather
broadly applied in many neurosurgical subspecialties and for
the treatment of several different pathologies. The main rea-
sons guiding the increased implementation into clinical prac-
tice were the perceived improved surgical outcome granted by
robotics as well as marketing considerations, potentially

Table 3 Application of robotic technology in clinical practice and research, stratified by region

Domain Region p

Overall
(n = 406)

North America
(n = 286)

Europe
(n = 70)

Latin America
(n = 16)

Asia Pacific
(n = 22)

Middle East
(n = 10)

Africa
(n = 2)

Clinical
practice,
n (%)

197 (48.5) 147 (51.4) 38 (54.3) 3 (18.8) 7 (31.8) 2 (20.0) 0 (0.0) 0.008*

Clinical
research,
n (%)a

85/369 (20.9) 50/255 (19.6) 26/68 (38.2) 2/15 (13.3) 5/20 (25.0) 1/9 (11.1) 1/2 (50.0) 0.021*

*p ≤ 0.05
aWhile all responders answered the question on robotic use in clinical practice, a subset did not answer the second question on application of robotic
technology in clinical research

Table 4 Most commonly reported robotic devices

Device Value (n = 197)

Mazor Family, n (%)

Overall 63 (32.0%)

Undefined 50 (25.4%)

SpineAssist 6 (3.0%)

Renaissance 5 (2.5%)

Mazor X 2 (1.0%)

ROSA, n (%) 52 (26.4%)

Excelsius GPS, n (%) 12 (6.1%)

Neuromate, n (%) 10 (5.1%)

Cirq, n (%) 9 (4.6%)

DaVinci, n (%) 7 (3.6%)

Synaptive, n (%) 5 (2.5%)

Cyberknife, n (%) 4 (2.0%)

Visualase, n (%) 2 (1%)

Corindus, n (%) 1 (0.5%)

Others/unspecific, n (%) 66 (33.5%)
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leading to more patient referrals. Predictably, adoption of ro-
botic surgery into clinical practice was more frequent among
younger surgeons, particularly those under 30, and less com-
mon in physicians practicing in non-academic centers. The
fact that the use of robots in neurosurgery was particularly
frequent in those < 30 years of age shows that neurosurgeons
have increasingly contact with robotic technology during their
residency training. The lower odds ratio identified for male
respondents, may reflect an increased representation of the
female population among the younger neurosurgeons and an
encouraging trend in terms of closing the existing gender gap
in neurosurgery [13, 14].

A statistically significantly decreased application of ro-
botic surgery into clinical practice was found in Asia and
Pacific and the Middle East compared with Europe and
North America. In addition, lower clinical adoption was
observed in Latin America and Africa, but this effect was
not statistically significant due to the low sample size.
These findings are compatible to the potentially decreased
availability of resources in some of the countries belong-
ing to the aforementioned regions. This hypothesis is also
confirmed by a trend toward higher scores obtained for

acquisition and maintenance costs as a reason for non-use
of robotics with respect to other countries.

Robotics in neurosurgery

The very definition of robotics poses some difficulties in identi-
fying how neurosurgery is adapting to this increasingly evolving
field. To date, most surgical robotics are very limited in their
ability to perform procedures and make decisions automatically
without major human intervention. Therefore, several other clas-
sifications have been proposed to describe surgical robots, based
on one side on the device’s function and application, and on the
other on the surgeon-robot interaction [15]. In fact, robotics far
from only substituting and transforming the surgical act of the
physician through automation and remote control has also been
increasingly adopted for assisting specific surgical tasks, for ex-
ample, anatomical localization of the lesion, stabilization of the
surgeon’s hand during prolonged microsurgical work, or pedicle
screw insertion [16, 17]. Moreover, the inherent complexity of
neurosurgical procedures often requires different robotic compe-
tencies in different phases of surgery [1]. This kind of robotic aid
is more precisely referred to as “cobot surgery”, where robotics

Fig. 1 Proportions of neurosurgeons who report having used robotic technology in their clinical practice among the 406 responders, stratified by region
and plotted on a world map (Mercator projection)
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enhance and maximize specific parts of the surgical procedure
without performing automatic actions. Regardless, the use of
robotic systems has been increasingly often reported in the neu-
rosurgical literature, both for cranial and spinal applications [16,
18]. Table 7 provides an overview of relevant publications on the
most recent developments of robotics in the field of
neurosurgery.

Spinal applications

Several robotic systemsareavailable forspinal interventions,
mostly for assistance inpedicle screwplacement [19].Recent
literature reported that robot-assisted screw placement is at
least non-inferior if not superiorwith respect to accuracy than
conventional free-hand technique and potentially decreases

Table 5 Multivariate logistic
regression analysis for
characteristics associated with
relationship between adoption of
robotics into clinical practice and
research, respectively

Parameter Clinical practice Clinical research

OR 95% CI p OR 95% CI p

Age group

< 30 2.55 1.26 to 5.23 0.010* 1.46 0.59 to 3.54 0.401

30–40 Reference – – Reference – –

40–50 1.68 0.84 to 3.40 0.142 2.14 0.92 to 3.03 0.078

50–60 1.61 0.78 to 3.35 0.197 1.16 0.43 to 2.96 0.766

> 60 1.35 0.41 to 4.35 0.619 1.50 0.35 to 6.14 0.574

Male gender 0.46 0.21 to 0.96 0.042* 1.55 0.65 to 4.06 0.347

Subspecialty

Spine Reference – – Reference – –

Neuro-oncology 1.37 0.70 to 2.71 0.352 0.71 0.32 to 1.55 0.396

Neurovascular 0.63 0.31 to 1.26 0.196 0.74 0.32 to 1.63 0.461

Pediatric 0.75 0.32 to 1.71 0.495 0.39 0.11 to 1.1 0.093

Functional 1.38 0.61 to 3.19 0.444 0.51 0.16 to 1.43 0.229

Trauma 0.90 0.38 to 2.14 0.806 0.58 0.19 to 1.55 0.301

Epilepsy 0.47 0.15 to 1.35 0.170 0.40 0.08 to 1.47 0.206

Neurointensive care NA NA 0.983 NA NA 0.986

Peripheral nerve 0.85 0.03 to 23.5 0.915 NA NA 0.853

Skull base NA NA 0.076 1.25 0.06 to 11.44 0.988

Other NA NA 0.991 NA NA 0.991

Setting

Academic Reference – – Reference – .

Non-academic 0.45 0.23 to 0.87 0.019* 0.44 0.17 to 1.04 0.073

Private practice 0.57 0.29 to 1.11 0.103 0.70 0.30 to 1.55 0.392

Other 0.84 0.15 to 4.32 0.832 0.82 0.04 to 6.56 0.867

Experience

Board certified/attending Reference – – Reference – –

Resident 0.66 0.29 to 1.5 0.328 1.28 0.48 to 3.41 0.622

Chairperson 1.37 0.62 to 3.02 0.432 0.98 0.37 to 2.43 0.972

Fellow 4.85 1.13 to 3.43 0.057 1.72 0.44 to 6.3 0.421

Medical student 1.08 0.24 to 5.31 0.919 3.23 0.51 to 2.16 0.215

Other 0.61 0.12 to 2.56 0.501 2.16 0.41 to 9.41 0.322

Region

North America Reference – – Reference – –

Europe 1.23 0.67 to 2.26 0.495 2.15 1.1 to 4.21 0.025*

Latin America 0.63 0.21 to 1.76 0.390 0.58 0.09 to 2.34 0.496

Asia Pacific 0.15 0.03 to 0.54 0.008* 2.06 0.58 to 6.5 0.232

Middle East 0.14 0.02 to 0.67 0.028* 0.41 0.02 to 2.8 0.444

Africa NA NA 0.987 NA NA 0.220

OR odds ratio, CI confidence interval

*p ≤ 0.05

2681Neurosurg Rev (2021) 44:2675–2687



the rate of revision procedures [5, 17, 20–24]. A recent paper
byJosephetal.systematicallyreviewedapplicationsofrobot-
ics inspinal surgery [18].Theauthors reported thatmostcom-
parativestudies—apart from1RCT[25]—demonstrated that
robotics canprovide increased radiological accuracywith re-
spect to free-hand placement bothwith theMazor family and
ROSArobots.Arecentmeta-analysis investigatingclinically
relevant pedicle screw revision in robotic-guided, navigated
andfreehandthoracolumbarinstrumentationsfoundthatboth
roboticsandnavigationreducedpost-operative revisions,but
statistical significance was lost at sensitivity analysis for the
former [9]. When length of hospital stay and overall compli-
cations were evaluated, Siccoli et al. showed that free-hand
thoracolumbar screw insertionhadworse resultswith respect
to navigation, while no difference was found with robot-
guidedsurgery[26].Onthecontrary,nosignificantdifference
was found when radiation exposure was compared between
robot-guided, navigated surgery, and free-hand approach
[26].More recently, ameta-analysis by Fatima et al. reported
that perfect and acceptable pedicle screw accuracy as catego-
rizedbyGerztbein-Robbinclassificationwashigher in robot-
assisted than in free-hand surgery; complication rate, proxi-
mal facet joint violation, and intra-operative radiation time
and exposure were significantly lower, while length of sur-
gery was significantly higher [27]. Table 8 summarizes the
results of most recent meta-analyses comparing robot-
assisted spine surgery with navigated and free-hand
technique.

Highly powered ongoing prospective studies like the
European Robotic Spinal Instrumentation (EUROSPIN) [12]
and MIS-ReFRESH [7] studies are necessary to investigate if
these potential benefits warrant the high acquisition and main-
tenance costs of these systems.

Neuro-oncology

Robotic applications can also find applications in neuro-on-
cology. Most notably—of course also because invented by a
neurosurgeon—the CyberKnife is one worldwide-adopted ro-
bot that is frequently used to treat tumors of all kinds using
frameless stereotactic radiosurgery [28]. As other examples,
robot-guided convection-enhanced delivery of chemotherapy
for brainstem glioma was reported whereby the feasibility of
accurately and safely delivering very small diameter catheters
to deep targets within the brainstem was demonstrated [29].
Another example is the NeuRobot, a remotely controlled en-
doscope for tele-controlled tumor resection [30], which has
been proven to be useful also for intraventricular dissections
[31].

Cerebrovascular/endovascular neurosurgery

Robotics is also gaining momentum in cerebrovascular and
endovascular neurosurgery [32]. Currently tested applications
(in vitro and in vivo) include cerebral angiography (also a
robotic digital subtraction angiography (DSA) system),

Table 6 Tabulation of reasons for use and nonuse, per region. Responders graded importance of these reasons from 1 (not important) to 4 (highly
important)

Parameter Region p

Overall North
America

Europe Latin
America

Asia
Pacific

Middle
East

Africa

Reasons for use

Improved cost effectiveness 2.3 ± 1.0 2.4 ± 0.9 2.1 ± 1.2 1.7 ± 0.8 3.0 ± 0.0 3.0 ± 1.4 NA 0.072

Time savings 2.7 ± 1.0 2.9 ± 0.9 2.4 ± 1.1 1.7 ± 0.5 3.5 ± 0.7 3.0 ± 1.4 NA 0.003*

Improved surgical outcome 3.3 ± 0.9 3.4 ± 0.9 2.9 ± 1.1 2.9 ± 1.2 3.5 ± 0.7 4.0 ± 0.0 NA 0.057

Lower risk of complications 2.7 ± 1.0 3.2 ± 0–9 3.1 ± 1.0 2.6 ± 1.3 3.5 ± 0.7 3.5 ± 0.7 NA 0.648

Attract patients and referrals/marketing 3.2 ± 0.9 2.7 ± 1.0 2.8 ± 1.1 3.0 ± 0.6 3.0 ± 0.0 2.5 ± 2.1 NA 0.869

Reasons for non-use

Lack of published supporting evidence 2.4 ± 1.0 2.4 ± 1.0 2.0 ± 0.9 2.9 ± 1.1 2.6 ± 1.0 2.6 ± 0.8 1.5 ± 0.7 0.061

Acquisition/maintenance costs 3.4 ± 0.9 3.4 ± 0.9 3.1 ± 1.0 3.3 ± 1.2 3.7 ± 0.6 3.9 ± 0.4 4.0 ± 0.0 0.054

Difficulties with staff training/device education 2.3 ± 1.0 2.4 ± 1.0 1.8 ± 0.8 2.7 ± 1.0 2.5 ± 1.0 2.4 ± 1.0 3.0 ± 1.4 0.030*

Not personally convinced by their added value 2.4 ± 1.1 2.6 ± 1.1 2.0 ± 1.1 2.0 ± 1.0 2.0 ± 1.0 1.9 ± 0.7 1.0 ± 0.0 0.008*

No demand for robotic assistance/lack of applicable
devices

2.6 ± 1.0 2.6 ± 1.0 2.6 ± 1.0 2.6 ± 1.2 2.5 ± 0.8 2.7 ± 1.0 1.0 ± 0.0 0.424

Importance is presented as mean ± SD. The importance of reasons for use or non-use of robotics was compared among regions using the Kruskal-Wallis
H tests

*p ≤ 0.05
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robot-assisted operating microscopes for the treatment of ar-
teriovenous malformations and cavernomas, mechanical coil
insertion systems for aneurysm treatment (reducing the num-
ber of operators needed for the procedure from two to one),
and robotic endoscopic aneurysm clipping [33–35].
Moreover, several robotic systems that are already approved
for clinical applications in other specialties like interventional
cardiology and radiology may find fertile soil in neurosurgery
after appropriate modifications [36].

Other cranial applications

Other clinical applications of robotics systems in cranial neu-
rosurgery include stereotactic biopsy targeting, deep brain
stimulation (DBS) electrode placement, radiosurgery, place-
ment of stereoelectroencephalographic (SEEG) electrodes for
investigation of refractory epilepsy, ventricular catheter place-
ment, and laser ablative procedures [16]. Growing interest is
currently being placed on exoscopic camera systems to im-
prove illumination and depth-of-field when difficult-to-access
or deep lesions limit the visibility, although their potential
advantages over traditional operating microscopes still remain
questionable. For example, several small case series have ad-
dressed the efficacy and safety of the Synaptive Modus V
exoscope system in both spinal and cranial surgery, with en-
couraging results [37].

Limitations

Survey-based studies, while providing important insights,
have inherent limits because of several potential biases.
During survey distribution, selection and response bias are
possible. Time constraints on responders may have limited
their ability to answer with maximal accuracy, and in fact,
concerning the adoption of robotic systems into clinical re-
search, we obtained several incomplete or blank answers.
The data is mostly based on subjective impressions of sur-
geons. Knowing this, bias could arise from the fact that sur-
geons who are more exposed to neurosurgical robotics can
value it more positively than those who do not routinely make
use of it, and vice-versa. However, reasons for advantages and
disadvantages were specifically captured separately for users
and non-users. Additionally, the relative percentage of geo-
graphic regions was skewed in favor of western countries,
limiting the sensitivity of our survey for what concerns re-
gions such as Asia and Pacific, South America, and in partic-
ular Africa.

Conclusions

Our study provides a worldwide overview of neurosurgical
adoption of robotic technology. Robotic systems have the

technical potential to improve surgical procedures in terms
of efficacy and safety by several means, spanning from indi-
rect assistance of surgeons in complex parts of the operation
(such as lesion localization) to more or less integral substitu-
tion of the manual skills required by the surgical task. Our
survey sheds light on the diffusion of such technology and
their general perception by neurosurgical specialists. Almost
half of the surveyed neurosurgeons reported having clinical
experience with at least one robotic system. TheMazor family
and ROSA robots were most commonly applied. Before a
consistent and widespread shift in clinical practice, superiority
or non-inferiority of neurosurgical robotic applications needs
to be established by high level of evidence studies and, at the
same time, carefully balanced with considerations on costs of
implementation. The results of ongoing and future trials will
clarify which neurosurgical robotic applications can routinely
enter clinical practice and can determine the relative extent of
the potential clinical benefits granted by the integration and
technical refinement of robotic technology.
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