97 research outputs found
The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments
The growth processes from protoplanetary dust to planetesimals are not fully
understood. Laboratory experiments and theoretical models have shown that
collisions among the dust aggregates can lead to sticking, bouncing, and
fragmentation. However, no systematic study on the collisional outcome of
protoplanetary dust has been performed so far so that a physical model of the
dust evolution in protoplanetary disks is still missing. We intend to map the
parameter space for the collisional interaction of arbitrarily porous dust
aggregates. This parameter space encompasses the dust-aggregate masses, their
porosities and the collision velocity. With such a complete mapping of the
collisional outcomes of protoplanetary dust aggregates, it will be possible to
follow the collisional evolution of dust in a protoplanetary disk environment.
We use literature data, perform own laboratory experiments, and apply simple
physical models to get a complete picture of the collisional interaction of
protoplanetary dust aggregates. In our study, we found four different types of
sticking, two types of bouncing, and three types of fragmentation as possible
outcomes in collisions among protoplanetary dust aggregates. We distinguish
between eight combinations of porosity and mass ratio. For each of these cases,
we present a complete collision model for dust-aggregate masses between 10^-12
and 10^2 g and collision velocities in the range 10^-4 to 10^4 cm/s for
arbitrary porosities. This model comprises the collisional outcome, the
mass(es) of the resulting aggregate(s) and their porosities. We present the
first complete collision model for protoplanetary dust. This collision model
can be used for the determination of the dust-growth rate in protoplanetary
disks.Comment: accepted by Astronomy and Astrophysic
Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks
Context. Observations at sub-millimeter and mm wavelengths will in the near
future be able to resolve the radial dependence of the mm spectral slope in
circumstellar disks with a resolution of around a few AU at the distance of the
closest star-forming regions.
Aims. We aim to constrain physical models of grain growth and fragmentation
by a large sample of (sub-)mm observations of disks around pre-main sequence
stars in the Taurus-Auriga and Ophiuchus star-forming regions.
Methods. State-of-the-art coagulation/fragmentation and disk-structure codes
are coupled to produce steady-state grain size distributions and to predict the
spectral slopes at (sub-)mm wavelengths.
Results. This work presents the first calculations predicting the mm spectral
slope based on a physical model of grain growth. Our models can quite naturally
reproduce the observed mm-slopes, but a simultaneous match to the observed
range of flux levels can only be reached by a reduction of the dust mass by a
factor of a few up to about 30 while keeping the gas mass of the disk the same.
This dust reduction can either be due to radial drift at a reduced rate or
during an earlier evolutionary time (otherwise the predicted fluxes would
become too low) or due to efficient conversion of dust into larger, unseen
bodies.Comment: Accepted for publication in A&A Letters. 5 pages, 3 figure
The first stages of planet formation in binary systems: How far can dust coagulation proceed?
We examine the first phase of the core accretion model, namely the dust
growth/fragmentation in binary systems. In our model, a gas and dust disk is
present around the primary star and is perturbed by the secondary. We study the
effects of a secondary with/without eccentricity on the dust population to
determine what sizes the aggregates can reach and how that compares to the dust
population in disks around single stars.
We find that the secondary star has two effects on the dust population. 1.)
The disk is truncated due to the presence of the secondary star and the maximum
mass of the particles is decreased in the lowered gas densities. This effect is
dominant in the outer disk. 2.) The perturbation of the secondary pumps up the
eccentricity of the gas disk, which in turn increases the relative velocity
between the dust and the gas. Therefore the maximum particle sizes are further
decreased. The second effect of the secondary influences the entire disk.
Coagulation is efficiently reduced even at the very inner parts of the disk.
The average mass of the particles is reduced by four orders of magnitude (as a
consequence, the stopping time is reduced by one order of magnitude) in disks
around binary systems compared to dust in disks around single stars.Comment: accepted for publication in A&
The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier
The sticking of micron sized dust particles due to surface forces in
circumstellar disks is the first stage in the production of asteroids and
planets. The key ingredients that drive this process are the relative velocity
between the dust particles in this environment and the complex physics of dust
aggregate collisions. Here we present the results of a collision model, which
is based on laboratory experiments of these aggregates. We investigate the
maximum aggregate size and mass that can be reached by coagulation in
protoplanetary disks. We model the growth of dust aggregates at 1 AU at the
midplane at three different gas densities. We find that the evolution of the
dust does not follow the previously assumed growth-fragmentation cycles.
Catastrophic fragmentation hardly occurs in the three disk models. Furthermore
we see long lived, quasi-steady states in the distribution function of the
aggregates due to bouncing. We explore how the mass and the porosity change
upon varying the turbulence parameter and by varying the critical mass ratio of
dust particles. Particles reach Stokes numbers of roughly 10^-4 during the
simulations. The particle growth is stopped by bouncing rather than
fragmentation in these models. The final Stokes number of the aggregates is
rather insensitive to the variations of the gas density and the strength of
turbulence. The maximum mass of the particles is limited to approximately 1
gram (chondrule-sized particles). Planetesimal formation can proceed via the
turbulent concentration of these aerodynamically size-sorted chondrule-sized
particles.Comment: accepted for publication in A&
Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks
As accretion in protoplanetary disks is enabled by turbulent viscosity, the
border between active and inactive (dead) zones constitutes a location where
there is an abrupt change in the accretion flow. The gas accumulation that
ensues triggers the Rossby wave instability, that in turn saturates into
anticyclonic vortices. It was suggested that the trapping of solids within them
leads to a burst of planet formation on very short timescales. We perform
two-dimensional global simulations of the dynamics of gas and solids in a
non-magnetized thin protoplanetary disk with the Pencil Code. We use multiple
particle species of radius 1, 10, 30, and 100 cm, solving for the particles'
gravitational interaction by a particle-mesh method. The dead zone is modeled
as a region of low viscosity. Adiabatic and locally isothermal equations of
state are used. We find that the Rossby wave instability is triggered under a
variety of conditions, thus making vortex formation a robust process. Inside
the vortices, fast accumulation of solids occurs and the particles collapse
into objects of planetary mass in timescales as short as five orbits. Because
the drag force is size-dependent, aerodynamical sorting ensues within the
vortical motion, and the first bound structures formed are composed primarily
of similarly-sized particles. In addition to erosion due to ram pressure, we
identify gas tides from the massive vortices as a disrupting agent of formed
protoplanetary embryos. We also estimate the collisional velocity history of
the particles that compose the most massive embryo by the end of the
simulation, finding that the vast majority of them never experienced a
collision with another particle at speeds faster than 1 m/s.Comment: 19 pages, 15 figures + Appendices. Accepted by A&A. Nature of
replacement: included a missing referenc
Compression Behaviour of Porous Dust Agglomerates
The early planetesimal growth proceeds through a sequence of sticking
collisions of dust agglomerates. Very uncertain is still the relative velocity
regime in which growth rather than destruction can take place. The outcome of a
collision depends on the bulk properties of the porous dust agglomerates.
Continuum models of dust agglomerates require a set of material parameters that
are often difficult to obtain from laboratory experiments. Here, we aim at
determining those parameters from ab-initio molecular dynamics simulations. Our
goal is to improveon the existing model that describe the interaction of
individual monomers. We use a molecular dynamics approach featuring a detailed
micro-physical model of the interaction of spherical grains. The model includes
normal forces, rolling, twisting and sliding between the dust grains. We
present a new treatment of wall-particle interaction that allows us to perform
customized simulations that directly correspond to laboratory experiments. We
find that the existing interaction model by Dominik & Tielens leads to a too
soft compressive strength behavior for uni and omni-directional compression.
Upon making the rolling and sliding coefficients stiffer we find excellent
agreement in both cases. Additionally, we find that the compressive strength
curve depends on the velocity with which the sample is compressed. The modified
interaction strengths between two individual dust grains will lead to a
different behaviour of the whole dust agglomerate. This will influences the
sticking probabilities and hence the growth of planetesimals. The new parameter
set might possibly lead to an enhanced sticking as more energy can be stored in
the system before breakup.Comment: 11 pages, 14 figures, accepted for publication in A&
The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? III. Sedimentation driven coagulation inside the snow-line
We investigate dust growth due to settling in a 1D vertical column of a
protoplanetary disk. It is known from the observed 10 micron feature in disk
SEDs, that small micron-sized grains are present at the disk atmosphere
throughout the lifetime of the disk. We hope to explain such questions as what
process can keep the disk atmospheres dusty for the lifetime of the disk and
how does the particle properties change as a function of height above the
midplane. We use a Monte Carlo code to follow the mass and porosity evolution
of the particles in time. The used collision model is based on laboratory
experiments performed on dust aggregates. As the experiments cannot cover all
possible collision scenarios, the largest uncertainty of our model is the
necessary extrapolations we had to perform. We simultaneously solve for the
particle growth and motion. Particles can move vertically due to settling and
turbulent mixing. We assume that the vertical profile of the gas density is
fixed in time and only the solid component evolves. We find that the used
collision model strongly influences the masses and sizes of the particles. The
laboratory experiment based collision model greatly reduces the particle sizes
compared to models that assume sticking at all collision velocities. We find
that a turbulence parameter of alpha = 10^-2 is needed to keep the dust
atmospheres dusty, but such strong turbulence can produce only small particles
at the midplane which is not favorable for planetesimal formation models. We
also see that the particles are larger at the midplane and smaller at the upper
layers of the disk. At 3-4 pressure scale heights micron-sized particles are
produced. These particle sizes are needed to explain the 10 micron feature of
disk SEDs. Turbulence may therefore help to keep small dust particles in the
disk atmosphere.Comment: accepted for publication in A&
Secular dynamics of planetesimals in tight binary systems: Application to Gamma-Cephei
The secular dynamics of small planetesimals in tight binary systems play a
fundamental role in establishing the possibility of accretional collisions in
such extreme cases. The most important secular parameters are the forced
eccentricity and secular frequency, which depend on the initial conditions of
the particles, as well as on the mass and orbital parameters of the secondary
star. We construct a second-order theory (with respect to the masses) for the
planar secular motion of small planetasimals and deduce new expressions for the
forced eccentricity and secular frequency. We also reanalyze the radial
velocity data available for Gamma-Cephei and present a series of orbital
solutions leading to residuals compatible with the best fits. Finally, we
discuss how different orbital configurations for Gamma-Cephei may affect the
dynamics of small bodies in circunmstellar motion. For Gamma-Cephei, we find
that the classical first-order expressions for the secular frequency and forced
eccentricity lead to large inaccuracies around 50 % for semimajor axes larger
than one tenth the orbital separation between the stellar components. Low
eccentricities and/or masses reduce the importance of the second-order terms.
The dynamics of small planetesimals only show a weak dependence with the
orbital fits of the stellar components, and the same result is found including
the effects of a nonlinear gas drag. Thus, the possibility of planetary
formation in this binary system largely appears insensitive to the orbital fits
adopted for the stellar components, and any future alterations in the system
parameters (due to new observations) should not change this picture. Finally,
we show that planetesimals migrating because of gas drag may be trapped in
mean-motion resonances with the binary, even though the migration is divergent.Comment: 11 pages, 9 figure
- …