104 research outputs found
Моделирование колебаний полюса Земли с помощью нечеткой логики и функции Вейерштрасса
At present, the study of the Earth and its geometry is of great interest to researchers in various fields of science. A number of studies concerning the Earth motion relative to the center of mass have been carried out. Methods of theoretical and celestial mechanics and mathematical statistics are used to prove that in the main approximation the Earth motion relative to the center of mass - the oscillation of the pole - is the union of two circles with a slow trend of the average position corresponding to the annual and the Chandler components.The article analyses the existing mathematical model (MM) of the oscillation process of the Earth's pole relative to the center of mass. The relationships of the Earth's pole oscillations relative to the center of mass with time are described by solving the Euler — Liouville differential equations of the celestial mechanics. The unknown coefficients in the equations are found using the numerical least-squares method by processing the daily data from the International Earth Rotation Service (IERS). It was noted that the examined MM does not allow observational data of the IERS to describe adequately the process of oscillations of the Earth's pole for a long time interval (up to 10 years), the discrepancy reaches 20%.For the first time, a method for describing and predicting the coordinates of the Earth's pole with time has been proposed using the Takagi — Sugeno fuzzy logic method. The developed method was tested for adequacy with the discrepancy of 4% at most over the entire time interval. An approach is proposed to describe the change in the coordinates of the Earth's pole using the first seven terms of the Weierstrass function series. The proposed method has a relatively high discrepancy with the IERS data (from 5 to 50%), but it allows us to describe the process of oscillations of the Earth's pole, as well as the method based on the Takagi — Sugeno fuzzy logic method over a long time interval.В настоящее время исследование Земли и ее геометрии вызывает широкий интерес исследователей различных сфер науки. Проведен ряд исследований, посвященных исследованию движения Земли относительно центра масс. Методами теоретической и небесной механики и математической статистики доказано, что в главном приближении движение Земли относительно центра масс – колебания полюса – есть объединение двух окружностей с медленным трендом среднего положения, отвечающих годичной и чандлеровской компонентам.Проведен анализ существующей математической модели (ММ) процесса колебаний полюса Земли относительно центра масс. Зависимости колебаний полюса Земли относительно центра масс с течением времени описываются решением дифференциальных уравнений небесной механики Эйлера — Лиувилля. Неизвестные коэффициенты в уравнениях находятся с использованием численного метода наименьших квадратов посредством обработки ежесуточных данных, представленных международной службой вращения Земли (МСВЗ). Отмечено, что рассмотренная ММ не позволяет адекватно данным наблюдений МСВЗ описать процесс колебаний полюса Земли на длительном интервале времени (до 10 лет), расхождение достигает 20%.Впервые предложен метод описания и прогнозирования координат полюса Земли с течением времени с использованием метода нечеткой логики Такаги — Сугено. Разработанный метод проверен на адекватность, расхождение не превысило 4% на всем временном интервале. Предложен подход к описанию изменения координат полюса Земли с использованием семи первых членов ряда функции Вейерштрасса. Предложенный метод имеет относительно высокое расхождение с данными МСВЗ (от 5 до 50%), однако позволяет описать процесс колебаний полюса Земли, как и метод, в основу которого положен метод нечеткой логики Такаги — Сугено, на длительном интервале времени
Automatically Recognising European Portuguese Children's Speech
International audienceThis paper reports findings from an analysis of errors made by an automatic speech recogniser trained and tested with 3-10-year-old European Portuguese children's speech. We expected and were able to identify frequent pronunciation error patterns in the children's speech. Furthermore, we were able to correlate some of these pronunciation error patterns and automatic speech recognition errors. The findings reported in this paper are of phonetic interest but will also be useful for improving the performance of automatic speech recognisers aimed at children representing the target population of the study
Magnetization dynamics and coherent spin manipulation of a propeller Gd(III) complex with the smallest helicene ligand
A homoleptic gadolinium(III) complex with the smallest helicene-type ligand, 1,10-phenanthroline-N,N'-dioxide (phendo) [Gd(phendo)(4)](NO3)(3)center dot xMeOH (phendo = 1,10-phenanthroline-N,N'-dioxide, MeOH = methanol), shows slow relaxation of the magnetization characteristic for Single Ion Magnets (SIM), despite negligible magnetic anisotropy, confirmed by ab initio calculations. Solid state dilution magnetic and EPR studies reveal that the magnetization dynamics of the [Gd(phendo)(4)](3+) cation is controlled mainly by a Raman process. Pulsed EPR experiments demonstrate long phase memory times (up to 2.7 mu s at 5 K), enabling the detection of Rabi oscillations at 20 K, which confirms coherent control of its spin state.</p
Towards a multimedia knowledge-based agent with social competence and human interaction capabilities
We present work in progress on an intelligent embodied conversation agent in the basic care and healthcare domain. In contrast to most of the existing agents, the presented agent is aimed to have linguistic cultural, social and emotional competence needed to interact with elderly and migrants. It is composed of an ontology-based and reasoning-driven dialogue manager, multimodal communication analysis and generation modules and a search engine for the retrieval of multimedia background content from the web needed for conducting a conversation on a given topic.The presented work is funded by the European Commission under the contract number H2020-645012-RIA
From music to mathematics and backwards: introducing algebra, topology and category theory into computational musicology
International audienceDespite a long historical relationship between mathematics and music, the interest of mathematicians is a recent phenomenon. In contrast to statistical methods and signal-based approaches currently employed in MIR (Music Information Research), the research project described in this paper stresses the necessity of introducing a structural multidisciplinary approach into computational musicology making use of advanced mathematics. It is based on the interplay between three main mathematical disciplines: algebra, topology and category theory. It therefore opens promising perspectives on important prevailing challenges, such as the automatic classification of musical styles or the solution of open mathematical conjectures, asking for new collaborations between mathematicians, computer scientists, musicologists, and composers. Music can in fact occupy a strategic place in the development of mathematics since music-theoretical constructions can be used to solve open mathematical problems. The SMIR project also differs from traditional applications of mathematics to music in aiming to build bridges between different musical genres, ranging from contemporary art music to popular music, including rock, pop, jazz and chanson. Beyond its academic ambition, the project carries an important societal dimension stressing the cultural component of 'mathemusical' research, that naturally resonates with the underlying philosophy of the “Imagine Maths”conference series. The article describes for a general public some of the most promising interdisciplinary research lines of this project
Knowledge Boundary Spanning Mechanisms in a Shared Services Centre Context
This study focuses on the roles of knowledge boundary spanning mechanisms and intellectual capital (human, structural, and relational) in managing knowledge sharing in an IT-specialized shared services centre (IT-SSC) context. Although the literature stresses the growing utilization of the SSC as an outsourcing model, there is a lack of studies that examine the dynamic process of knowledge sharing across the organizational boundaries in this specific business model. Drawing on the literatures on SSC and on cross-boundary knowledge sharing we propose a conceptual framework based on four research propositions that were validated with primary and secondary data. The results suggest that IT-SSCs present high human capital, but encounter challenges developing relational and structural capitals. It also appears that IT-SSC management tends to prefer the utilization of boundary spanners and boundary objects instead of boundary discourses and boundary practices as mechanisms for efficient boundary spanning
SOD1 and Amyotrophic Lateral Sclerosis: Mutations and Oligomerization
There are about 100 single point mutations of copper, zinc superoxide dismutase 1 (SOD1) which are reported (http://alsod.iop.kcl.ac.uk/Als/index.aspx) to be related to the familial form (fALS) of amyotrophic lateral sclerosis (ALS). These mutations are spread all over the protein. It is well documented that fALS produces protein aggregates in the motor neurons of fALS patients, which have been found to be associated to mitochondria. We selected eleven SOD1 mutants, most of them reported as pathological, and characterized them investigating their propensity to aggregation using different techniques, from circular dichroism spectra to ThT-binding fluorescence, size-exclusion chromatography and light scattering spectroscopy. We show here that these eleven SOD1 mutants, only when they are in the metal-free form, undergo the same general mechanism of oligomerization as found for the WT metal-free protein. The rates of oligomerization are different but eventually they give rise to the same type of soluble oligomeric species. These oligomers are formed through oxidation of the two free cysteines of SOD1 (6 and 111) and stabilized by hydrogen bonds, between beta strands, thus forming amyloid-like structures. SOD1 enters the mitochondria as demetallated and mitochondria are loci where oxidative stress may easily occur. The soluble oligomeric species, formed by the apo form of both WT SOD1 and its mutants through an oxidative process, might represent the precursor toxic species, whose existence would also suggest a common mechanism for ALS and fALS. The mechanism here proposed for SOD1 mutant oligomerization is absolutely general and it provides a common unique picture for the behaviors of the many SOD1 mutants, of different nature and distributed all over the protein
Influencing the properties of dysprosium single-molecule magnets with phosphine, phosphide and phosphinidene ligands
Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14 K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers’ doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256 cm1 and magnetic hysteresis up to 4.4 K
Automatically Recognising European Portuguese Children's Speech
This paper reports findings from an analysis of errors made by an automatic speech recogniser trained and tested with 3-10-year-old European Portuguese children's speech. We expected and were able to identify frequent pronunciation error patterns in the children's speech. Furthermore, we were able to correlate some of these pronunciation error patterns and automatic speech recognition errors. The findings reported in this paper are of phonetic interest but will also be useful for improving the performance of automatic speech recognisers aimed at children representing the target population of the study
- …