16 research outputs found

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    A cell atlas of human thymic development defines T cell repertoire formation.

    Get PDF
    The thymus provides a nurturing environment for the differentiation and selection of T cells, a process orchestrated by their interaction with multiple thymic cell types. We used single-cell RNA sequencing to create a cell census of the human thymus across the life span and to reconstruct T cell differentiation trajectories and T cell receptor (TCR) recombination kinetics. Using this approach, we identified and located in situ CD8αα+ T cell populations, thymic fibroblast subtypes, and activated dendritic cell states. In addition, we reveal a bias in TCR recombination and selection, which is attributed to genomic position and the kinetics of lineage commitment. Taken together, our data provide a comprehensive atlas of the human thymus across the life span with new insights into human T cell development

    Sensitivity of imaging for multifocal-multicentric breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This retrospective study aims to determine: 1) the sensitivity of preoperative mammography (Mx) and ultrasound (US), and re-reviewed Mx to detect multifocal multicentric breast carcinoma (MMBC), defined by pathology on surgical specimens, and 2) to analyze the characteristics of both detected and undetected foci on Mx and US.</p> <p>Methods</p> <p>Three experienced breast radiologists re-reviewed, independently, digital mammography of 97 women with MMBC pathologically diagnosed on surgical specimens. The radiologists were informed of all neoplastic foci, and blinded to the original mammograms and US reports. With regards to Mx, they considered the breast density, number of foci, the Mx characteristics of the lesions and their BI-RADS classification. For US, they considered size of the lesions, BI-RADS classification and US pattern and lesion characteristics. According to the histological size, the lesions were classified as: index cancer, 2nd lesion, 3rd lesion, and 4th lesion. Any pathologically identified malignant foci not previously described in the original imaging reports, were defined as undetected or missed lesions. Sensitivity was calculated for Mx, US and re-reviewed Mx for detecting the presence of the index cancer as well as additional satellite lesions.</p> <p>Results</p> <p>Pathological examination revealed 13 multifocal and 84 multicentric cancers with a total of 303 malignant foci (282 invasive and 21 non invasive). Original Mx and US reports had an overall sensitivity of 45.5% and 52.9%, respectively. Mx detected 83/97 index cancers with a sensitivity of 85.6%. The number of lesions <it>un</it>detected by original Mx was 165/303. The Mx pattern of breasts with undetected lesions were: fatty in 3 (1.8%); scattered fibroglandular density in 40 (24.3%), heterogeneously dense in 91 (55.1%) and dense in 31 (18.8%) cases. In breasts with an almost entirely fatty pattern, Mx sensitivity was 100%, while in fibroglandular or dense pattern it was reduced to 45.5%. Re-reviewed Mx detected only 3 additional lesions. The sensitivity of Mx was affected by the presence of dense breast tissue which obscured lesions or by an incorrect interpretation of suspicious findings.</p> <p>US detected 73/80 index cancers (sensitivity of 91.2%), US missed 117 malignant foci with a mean tumor diameter of 6.5 mm; the sensitivity was 52.9%</p> <p>Undetected lesions by US were those smallest in size and present in fatty breast or in the presence of microcalcifications without a visible mass.</p> <p>US sensitivity was affected by the presence of fatty tissue or by the extent of calcification.</p> <p>Conclusion</p> <p>Mx missed MMBC malignant foci more often in dense or fibroglandular breasts. US missed small lesions in mainly fatty breasts or when there were only microcalcifications. The combined sensitivity of both techniques to assess MMBC was 58%. We suggest larger studies on multimodality imaging.</p

    Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression

    Get PDF
    As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
    corecore