3,261 research outputs found
Latest results on Jovian disk X-rays from XMM-Newton
We present the results of a spectral study of the soft X-ray emission
(0.2-2.5 keV) from low-latitude (`disk') regions of Jupiter. The data were
obtained during two observing campaigns with XMM-Newton in April and November
2003. While the level of the emission remained approximately the same between
April and the first half of the November observation, the second part of the
latter shows an enhancement by about 40% in the 0.2-2.5 keV flux. A very
similar, and apparently correlated increase, in time and scale, was observed in
the solar X-ray and EUV flux.
The months of October and November 2003 saw a period of particularly intense
solar activity, which appears reflected in the behaviour of the soft X-rays
from Jupiter's disk. The X-ray spectra, from the XMM-Newton EPIC CCD cameras,
are all well fitted by a coronal model with temperatures in the range 0.4-0.5
keV, with additional line emission from Mg XI (1.35 keV) and Si XIII (1.86
keV): these are characteristic lines of solar X-ray spectra at maximum activity
and during flares.
The XMM-Newton observations lend further support to the theory that Jupiter's
disk X-ray emission is controlled by the Sun, and may be produced in large part
by scattering, elastic and fluorescent, of solar X-rays in the upper atmosphere
of the planet.Comment: 17 pages, 7 figures, accepted for publication in a special issue of
Planetary and Space Scienc
A protosolar nebula origin for the ices agglomerated by Comet 67P/Churyumov-Gerasimenko
The nature of the icy material accreted by comets during their formation in
the outer regions of the protosolar nebula is a major open question in
planetary science. Some scenarios of comet formation predict that these bodies
agglomerated from crystalline ices condensed in the protosolar nebula.
Concurrently, alternative scenarios suggest that comets accreted amorphous ice
originating from the interstellar cloud or from the very distant regions of the
protosolar nebula. On the basis of existing laboratory and modeling data, we
find that the N/CO and Ar/CO ratios measured in the coma of the Jupiter
family comet 67P/Churyumov-Gerasimenko by the ROSINA instrument aboard the
European Space Agency's Rosetta spacecraft match those predicted for gases
trapped in clathrates. If these measurements are representative of the bulk
N/CO and Ar/CO ratios in 67P/Churyumov-Gerasimenko, it implies that the
ices accreted by the comet formed in the nebula and do not originate from the
interstellar medium, supporting the idea that the building blocks of outer
solar system bodies have been formed from clathrates and possibly from pure
crystalline ices. Moreover, because 67P/Churyumov-Gerasimenko is impoverished
in Ar and N, the volatile enrichments observed in Jupiter's atmosphere
cannot be explained solely via the accretion of building blocks with similar
compositions and require an additional delivery source. A potential source may
be the accretion of gas from the nebula that has been progressively enriched in
heavy elements due to photoevaporation.Comment: The Astrophysical Journal Letters, in pres
Abstraction in action: K-5 teachers' uses of levels of abstraction, particularly the design level, in teaching programming
Research indicates that understanding levels of abstraction (LOA) and being able to move between the levels is essential to programming success. For K-5 contexts LOA levels have been named: problem, design, code and running the code. In a qualitative exploratory study, five K-5 teachers were interviewed on their uses of LOA, particularly the design level, in teaching programming and other subjects. Using PCK elements to analyse responses, the teachers interviewed used design as an instructional strategy and for assessment. The teachers used design as an aide memoire and the expert teachers used design: as a contract for pair-programming; to work out what they needed to teach; for learners to annotate with code snippets (to transition across LOA); for learners to self-assess and to assess ‘do-ability’. The teachers used planning in teaching writing to scaffold learning and promote self-regulation revealing their insight in student understanding. One issue was of the teachers' knowledge of terms including algorithm and code; a concept of ‘emergent algorithms’ is proposed. Findings from the study suggest design helps learners learn to program in the same way that planning helps learners learn to write and that LOA, particularly the design level, may provide an accessible exemplar of abstraction in action. Further work is needed to verify whether the study's results are generalisable more widely
The Profiles and Correlates of Psychopathology in Adolescents and Adults with Williams, Fragile X and Prader-Willi Syndromes
Psychopathology is prevalent in Williams (WS), fragile X (FXS) and Prader-Willi (PWS) syndromes. However, little is known about the potential correlates of psychopathology in these groups. A questionnaire study was completed by 111 caregivers of individuals with WS (n = 35); FXS (n = 50) and PWS (n = 26). Mean age was 26 years (range 12-57 years); 74 (67%) were male. Multiple regression analyses indicated that higher rates of health problems and sensory impairments predicted higher psychopathology in WS (p < .0001). In PWS, poorer adaptive ability predicted higher overall psychiatric disturbance (p = .001), generalised anxiety (p = .006) and hyperactivity (p = .003). There were no significant predictors in FXS. This study highlights dissociations in the potential risk markers of psychopathology between genetic syndromes. Implications for intervention are discussed
Doppler images and the underlying dynamo. The case of AF Leporis
The (Zeeman-)Doppler imaging studies of solar-type stars very often reveal
large high-latitude spots. This also includes F stars that possess relatively
shallow convection zones, indicating that the dynamo operating in these stars
differs from the solar dynamo. We aim to determine whether mean-field dynamo
models of late-F type dwarf stars can reproduce the surface features recovered
in Doppler maps. In particular, we wish to test whether the models can
reproduce the high-latitude spots observed on some F dwarfs. The photometric
inversions and the surface temperature maps of AF Lep were obtained using the
Occamian-approach inversion technique. Low signal-to-noise spectroscopic data
were improved by applying the least-squares deconvolution method. The locations
of strong magnetic flux in the stellar tachocline as well as the surface fields
obtained from mean-field dynamo solutions were compared with the observed
surface temperature maps. The photometric record of AF Lep reveals both long-
and short-term variability. However, the current data set is too short for
cycle-length estimates. From the photometry, we have determined the rotation
period of the star to be 0.9660+-0.0023 days. The surface temperature maps show
a dominant, but evolving, high-latitude (around +65 degrees) spot. Detailed
study of the photometry reveals that sometimes the spot coverage varies only
marginally over a long time, and at other times it varies rapidly. Of a suite
of dynamo models, the model with a radiative interior rotating as fast as the
convection zone at the equator delivered the highest compatibility with the
obtained Doppler images.Comment: accepted for publication in Astronomy & Astrophysic
DE 1 RIMS operational characteristics
The Retarding Ion Mass Spectrometer (RIMS) on the Dynamics Explorer 1 spacecraft observes both the thermal and superthermal (50 eV) ions of the ionosphere and inner magnetosphere. It is capable of measuring the detailed species distribution function of these ions in many cases. It was equipped with an integral electrometer to permit in-flight calibration of the detector sensitivities and variations thereof. A guide to understanding the RIMS data set is given. The reduction process from count rates to physical quantities is discussed in some detail. The procedure used to establish in-flight calibration is described, and results of a comparison with densities from plasma wave measurements are provided. Finally, a discussion is provided of various anomalies in the data set, including changes of channeltron efficiency with time, spin modulation of the axial sensor heads, apparent potential differences between the sensor heads, and failures of the radial head retarding potential sweep and of the -Z axial head aperture plane bias. Studies of the RIMS data set should be conducted only with a thorough awareness of the material presented here, or in collaboration with one of the scientists actively involved with RIMS data analysis
Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3
Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence
Recommended from our members
Scientific rationale of a Saturn probe mission
We describe the main scientific goals to be addressed by future in situ exploration of Saturn
X-rays from Saturn: A study with XMM-Newton and Chandra over the years 2002-05
We present the results of the two most recent (2005) XMM-Newton observations
of Saturn together with the re-analysis of an earlier (2002) observation from
the XMM-Newton archive and of three Chandra observations in 2003 and 2004.
While the XMM-Newton telescope resolution does not enable us to resolve
spatially the contributions of the planet's disk and rings to the X-ray flux,
we can estimate their strengths and their evolution over the years from
spectral analysis, and compare them with those observed with Chandra. The
spectrum of the X-ray emission is well fitted by an optically thin coronal
model with an average temperature of 0.5 keV. The addition of a fluorescent
oxygen emission line at ~0.53 keV improves the fits significantly. In
accordance with earlier reports, we interpret the coronal component as emission
from the planetary disk, produced by the scattering of solar X-rays in Saturn's
upper atmosphere, and the line as originating from the Saturnian rings. The
strength of the disk X-ray emission is seen to decrease over the period 2002 -
2005, following the decay of solar activity towards the current minimum in the
solar cycle. By comparing the relative fluxes of the disk X-ray emission and
the oxygen line, we suggest that the line strength does not vary over the years
in the same fashion as the disk flux. We consider possible alternatives for the
origin of the line. The connection between solar activity and the strength of
Saturn's disk X-ray emission is investigated and compared with that of Jupiter.
We also discuss the apparent lack of X-ray aurorae on Saturn and conclude that
they are likely to lie below the sensitivity threshold of current Earth-bound
observatories. A similar comparison for Uranus and Neptune leads to the same
disappointing conclusion.Comment: 10 pages, 5 figures; to be published in 'Astronomy and Astrophysics
Modeling the Enceladus plume--plasma interaction
We investigate the chemical interaction between Saturn's corotating plasma
and Enceladus' volcanic plumes. We evolve plasma as it passes through a
prescribed H2O plume using a physical chemistry model adapted for water-group
reactions. The flow field is assumed to be that of a plasma around an
electrically-conducting obstacle centered on Enceladus and aligned with
Saturn's magnetic field, consistent with Cassini magnetometer data. We explore
the effects on the physical chemistry due to: (1) a small population of hot
electrons; (2) a plasma flow decelerated in response to the pickup of fresh
ions; (3) the source rate of neutral H2O. The model confirms that charge
exchange dominates the local chemistry and that H3O+ dominates the water-group
composition downstream of the Enceladus plumes. We also find that the amount of
fresh pickup ions depends heavily on both the neutral source strength and on
the presence of a persistent population of hot electrons.Comment: 10 pages, 1 table, 2 figure
- …