research

Modeling the Enceladus plume--plasma interaction

Abstract

We investigate the chemical interaction between Saturn's corotating plasma and Enceladus' volcanic plumes. We evolve plasma as it passes through a prescribed H2O plume using a physical chemistry model adapted for water-group reactions. The flow field is assumed to be that of a plasma around an electrically-conducting obstacle centered on Enceladus and aligned with Saturn's magnetic field, consistent with Cassini magnetometer data. We explore the effects on the physical chemistry due to: (1) a small population of hot electrons; (2) a plasma flow decelerated in response to the pickup of fresh ions; (3) the source rate of neutral H2O. The model confirms that charge exchange dominates the local chemistry and that H3O+ dominates the water-group composition downstream of the Enceladus plumes. We also find that the amount of fresh pickup ions depends heavily on both the neutral source strength and on the presence of a persistent population of hot electrons.Comment: 10 pages, 1 table, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019