21 research outputs found

    Genome stability of the vaccine strain VAC∆6

    Get PDF
    Due to cessation of mass smallpox vaccination in 1980, the collective immunity of humans against orthopoxvirus infections has virtually been lost. Therefore, the risk of spreading zoonotic human orthopoxvirus infections caused by monkeypox and cowpox viruses has increased in the world. First-generation smallpox vaccines based on Vaccinia virus (VAC) are reactogenic and therefore not suitable for mass vaccination under current conditions. This necessitates the development of modern safe live vaccines based on VAC using genetic engineering. We created the VACΔ6 strain by transient dominant selection. In the VACΔ6 genome, five virulence genes were intentionally deleted, and one gene was inactivated by inserting a synthetic DNA fragment. The virus was passaged 71 times in CV-1 cells to obtain the VACΔ6 strain from the VAC LIVP clonal variant. Such a long passage history might have led to additional off-target mutations in VACΔ6 compared to the original LIVP variant. To prevent this, we performed a genome-wide sequencing of VAC LIVP, VACΔ6, and five intermediate viral strains to assess possible off-target mutations. A comparative analysis of complete viral genomes showed that, in addition to target mutations, only two nucleotide substitutions occurred spontaneously when obtaining VACΔ4 from the VACΔ3 strain; the mutations persisting in the VACΔ5 and VACΔ6 genomes. Both nucleotide substitutions are located in intergenic regions (positions 1431 and 189738 relative to LIVP), which indicates an extremely rare occurrence of off-target mutations when using transient dominant selection to obtain recombinant VAC variants with multiple insertions/deletions. To assess the genome stability of the resulting attenuated vaccine strain, 15 consecutive cycles of cultivation of the industrial VACΔ6 strain were performed in 4647 cells certified for vaccine production in accordance with the “Guidelines for Clinical Trials of Medicinal Products”. PCR and sequencing analysis of six DNA fragments corresponding to the regions of disrupted genes in VACΔ6 showed that all viral DNA sequences remained unchanged after 15 passages in 4647 cells

    A model of the artificial metastasis of human epidermoid carcinoma A431 in nude mice for examination of the oncolytic activity of vaccinia virus

    Get PDF
    Human carcinoma A431 cells were subcutaneously injected into nude mice at points remote from each other. One of the two xenografts developed after­wards was used for treatment with a recombinant vaccinia virus, while another served as an artificial metastasis. We used the attenuated recombinant vaccinia virus (VACV) VVdGF-GFP2 of the L-IVP strain (GenBank accession number KP233807), with deletion of two virulence genes: the virus growth factor and thymidine kinase, with the gene for the green fluorescent protein (GFP2) inserted in an area of the latter. Treatments were performed by a single intratumoral injection of the recombinant VACV at a dose of 107 PFU/mouse. VACV was detected in cells of the artificial metastasis as early as two days following infection, and after 8 days virus concentrations were com- parable with those in the infected tumor (~109 PFU/ml). Electron microscopy revealed selective replication of the recombinant in tumor cells. Targeted accumulation of GFP2 in both tumor and metastasis was shown in the UV-images of the mice obtained using the In-vivo Multispectral Imaging System (Bruker, Germany). Complete destruction of the tumor was registered after 12 days, and that of metastasis, after 20 days post injection of VVdGF-GFP2. The destruction process was accompanied by pronounced edema and leukocyte infiltration of tumor tissue. The recombinant virus induced a significant reduction in the sizes of the tumor and metastasis: by the end of the experiment (35 days) the xenografts in the control mice were 10 times larger than those in the treated mice (5000 vs. 500 mm3). Our study showed that the attenuated VACV administered by the peripheral route not only is able to destroy the primary tumor, but also has a distinct antimeta­static action

    Hantavirus Associated with Hemorrhagic Fever with Renal Syndrome Outbreak in the Saratov Region in 2019

    Get PDF
    Pathogenic hantaviruses, belonging to the family Hantaviridae, genus Orthohantavirus, are widely spread in many regions of the world and cause hemorrhagic fever with renal syndrome (HFRS) in Europe and Asia. In the European Russia, the most active HFRS foci are located in the optimum habitat area of natural reservoir of the Puumala virus (PUUV), bank voles (Myodes glareolus), – in the Middle Volga and Cis-Urals. The largest number of cases of HFRS was registered in the Volga Federal District. In 2019, an outbreak of HFRS was registered among the residents of Saratov and the Saratov Region, the number of cases was 2702. Objective of the study was genetic identification of hantaviruses from HFRS patients and rodent carriers and phylogenetic analysis of full-size genomes from natural hosts during HFRS outbreak in the Saratov Region, 2019. Materials and methods. Blood samples of 8 HFRS patients from Saratov and 3 lung samples of bank voles captured in the suburb of Saratov were analyzed using reverse transcription polymerase chain reaction, followed by sequencing and phylogenetic analysis. Results and discussion. A total of 6 viral RNA isolates from HFRS patients were genetically typed, full-length RNA-isolate genomes were obtained for 3 natural carriers. Our data indicate that PUUV virus was associated with HFRS outbreak in Saratov. Genetic analysis revealed that the virus belonged to RUS lineage of PUUV, related most closely to strains from Udmurtia and Tatarstan and differed from strains circulating in the territory of Bashkortostan and Samara Region

    Fecal microbiome change in patients with ulcerative colitis after fecal microbiota transplantation

    Get PDF
    Intestinal human microbiota is a dynamic system that is under the pressures of its host organism and external factors. Microbiota disruption caused by these factors can lead to severe diseases including inflammatory and oncological diseases of the gastrointestinal tract. One of the possible approaches in managing the intestinal microbiota is fecal microbiota transplantation (FT) – transfer of the microbiota from the stool of a healthy donor to the intestinal tract of a recipient patient. Currently, this procedure is recognized as an efficacious method to normalize the intestinal microbiota mainly in inflammatory diseases of the gastrointestinal tract. In Russia, pilot studies of the effectiveness of FT in patients with ulcerative colitis have been conducted for several years, and these studies were started in Novosibirsk. The aim of this study was to assess the change of intestinal microbiome in 20 patients with ulcerative colitis after a single FT procedure. The main method is a comparative analysis of 16S ribosomal RNA sequence libraries constructed using fecal samples obtained from patients with ulcerative colitis before and after FT and sequenced on the Illumina MiSeq platform. The obtained results showed that FT led to an increase in average biodiversity in samples after FT compared to samples before FT; however, the difference was not significant. In the samples studied, the proportion of Firmicutes sequences, the major gastrointestinal microbiota of healthy people, was decreased (~32 % vs. >70 %), while the proportion of Proteobacteria sequences was increased (>9 % vs. <5 %). In some samples collected before FT, sequences of pathogenic Firmicutes and Proteobacteria were detected, including Acinetobacter spp., Enterococcusspp., Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Stenotrophomonas maltophylia, Streptococcusspp. In most cases, the proportion of such sequences after FT substantially decreased in appropriate samples. The exception was the Clostridiumdifficilesequences, which accounted for <0.5 % of the sequences in samples from almost half of the patients and after FT, the share of such C. difficilesequences was significantly reduced only in samples from three patients. It should be noted that the proportion of Lactobacillusspp. increased ten-fold and their species composition significantly expanded. According to the obtained results, a preliminary conclusion can be made that even a single FT procedure can lead to an increase in the biodiversity of the gastrointestinal microbiota in patients and to the optimization of the taxonomic composition of the microbiota

    Taxonomic composition and biodiversity of the gut microbiome from patients with irritable bowel syndrome, ulcerative colitis, and asthma

    Get PDF
    To date, the association of an imbalance of the intestinal microbiota with various human diseases, including both diseases of the gastrointestinal tract and disorders of the immune system, has been shown. However, despite the huge amount of accumulated data, many key questions still remain unanswered. Given limited data on the composition of the gut microbiota in patients with ulcerative colitis (UC) and irritable bowel syndrome (IBS) from different parts of Siberia, as well as the lack of data on the gut microbiota of patients with bronchial asthma (BA), the aim of the study was to assess the biodiversity of the gut microbiota of patients with IBS, UC and BA in comparison with those of healthy volunteers (HV). In this study, a comparative assessment of the biodiversity and taxonomic structure of gut microbiome was conducted based on the sequencing of 16S rRNA genes obtained from fecal samples of patients with IBS, UC, BA and volunteers. Sequences of the Firmicutes and Bacteroidetes types dominated in all samples studied. The third most common in all samples were sequences of the Proteobacteria type, which contains pathogenic and opportunistic bacteria. Sequences of the Actinobacteria type were, on average, the fourth most common. The results showed the presence of dysbiosis in the samples from patients compared to the sample from HVs. The ratio of Firmicutes/Bacteroidetes was lower in the IBS and UC samples than in HV and higher the BA samples. In the samples from patients with intestinal diseases (IBS and UC), an increase in the proportion of sequences of the Bacteroidetes type and a decrease in the proportion of sequences of the Clostridia class, as well as the Ruminococcaceae, but not Erysipelotrichaceae family, were found. The IBS, UC, and BA samples had signif icantly more Proteobacteria sequences, including Methylobacterium, Sphingomonas, Parasutterella, Halomonas, Vibrio, as well as Escherichia spp. and Shigella spp. In the gut microbiota of adults with BA, a decrease in the proportion of Roseburia, Lachnospira, Veillonella sequences was detected, but the share of Faecalibacterium and Lactobacillus sequences was the same as in healthy individuals. A signif icant increase in the proportion of Halomonas and Vibrio sequences in the gut microbiota in patients with BA has been described for the f irst time

    Detection of the Genetic Material of the Viruses Tacheng uukuvirus and Sara tick phlebovirus in Taiga Ticks Collected in the Sverdlovsk, Tomsk Regions and Primorsky Territory of Russia and Their Phylogeny

    Get PDF
    Extensive spread of tick-borne diseases poses a significant problem for public health and the health of the population living in endemic areas.The aim of the study was to search, analyze genetic material and identify new viral agents of the Phenuiviridae family in taiga ticks collected in Asian regions of Russia using the method of high throughput sequencing.Materials and methods. The study involved 1460 taiga ticks collected in suburban areas of the Tomsk, Yekaterinburg and Primorsky Territory. The genetic material isolated from ticks was sequenced using Illumina technology followed by phylogenetic analysis.Results and discussion. Analysis of the sequencing results made it possible to detect extended nucleotide sequences of the L-gene fragment characteristic of the Phenuiviridae family viruses. We were able to identify 20 nucleotide sequences the length of 250 bp on average in homogenates of Ixodes persulcatus ticks. Eighteen isolates have been identified as members of the genus Uukuvirus and two isolates have been assigned to the genus Phlebovirus, Phenuiviridae family. Phylogenetic analysis has shown that all isolates of the genus Uukuvirus fall under the cluster of Tacheng tick virus 2 belonging to the species Tacheng uukuvirus. They form a separate phylogenetic group which is closely related to two Romanian variants of 2019. Tacheng tick virus 2 was detected in all three surveyed regions of the Asian part of Russia. Two Tomsk isolates of phlebovirus were classified as Sara tick phlebovirus and they clustered with two isolates of phleboviruses from Karelia. Thus, the genetic material of Tacheng tick virus 2 and Sara tick phlebovirus belonging to two genera of the family Phenuiviridae was found in I. persulcatus ticks collected in three geographically different regions of the Asian part of Russia

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Complete mitogenome of the ixodid tick Dermacentor reticulatus (Acari: Ixodida)

    No full text
    Here, we present the complete mitochondrial DNA sequence of Dermacentor reticulatus. The mitogenome is 14,806 bp and contains 13 protein-coding, 2 rRNA, and 22 tRNA genes, along with 2 control regions. Dermacentor reticulatus mitogenome has the common mitochondrial gene order of Metastriata ticks. It is phylogenetically close to the mitogenomes of Dermacentor ticks, of which D. everestanus mitogenome is the closest with 85.7% similarity. These data provide insights into the phylogenetic relations among Dermacentor ticks
    corecore