241 research outputs found

    Fractionation of Xyloglucan Fragments and Their Interaction with Cellulose

    Full text link

    Cell wall polysaccharides in black currants and bilberries-characterisation in berries, juice, and press cake

    Get PDF
    Abstract Cell wall polysaccharides from black currants and bilberries were characterised in three approaches. First, compositions of skin, pulp, and seeds show the distribution of polysaccharides over these tissues. A sequential extraction of cell wall material with different aqueous extractants informs about the extractability of the different polysaccharides, viz. pectins, hemicellulose, and cellulose. Finally, by isolation of cell wall polysaccharides from juice and press cakes obtained by the conventional juice manufacturing. The polysaccharide distribution was followed during juice processing. The main difference between bilberries and black currants is the dominant sugar residue in seeds: mannose for black currants and xylose for bilberries. Most of the hemicellulolytic sugars and cellulose can be found back in the press cake. The sugar composition of the press cake is similar to the composition of the residue after sequential extraction. Black currants contain more pectic sugars than bilberries. Consequently, a commercial enzyme used during processing releases more pectic material into the juice.

    Pectin, a versatile polysaccharide present in plant cell walls

    Get PDF

    Agro-materials : a bibliographic review

    Get PDF
    Facing the problems of plastic recycling and fossil resources exhaustion, the use of biomass to conceive new materials appears like a reasonable solution. Two axes of research are nowadays developed : on the one hand the synthesis of biodegradable plastics, whichever the methods may be, on the other hand the utilization of raw biopolymers, which is the object of this paper. From this perspective, the “plastic” properties of natural polymers, the caracteristics of the different classes of polymers, the use of charge in vegetable matrix and the possible means of improving the durability of these agro-materials are reviewed

    Improved Efficiency of Brewer’s Spent Grain Arabinoxylans by Ultrasound-Assisted Extraction

    Get PDF
    Arabinoxylan (AX) rich extracts from brewer’s spent grain (BSG) were produced by the application of ultrasound-assisted extraction (UAE) and conventional alkaline extraction (AKE). UAE and AKE were optimised for the production of the highest yield of ethanol insoluble material using response surface methodology (RSM). The efficiency of UAE was established by the significant reduction of time (7h to 25 min) and energy when compared to AKE, to recover similar amount of AX (60%) from BSG, leading to the production of starch-free AX-rich extracts

    Direct Compression Behavior of Low- and High-Methoxylated Pectins

    Get PDF
    The objective of this study was to evaluate possible usefulness of pectins for direct compression of tablets. The deformation behavior of pectin grades of different degree of methoxylation (DM), namely, 5%, 10%, 25%, 35%, 40%, 50%, and 60% were, examined in terms of yield pressures (YP) derived from Heckel profiles for both compression and decompression and measurements of elastic recovery after ejection. All pectin grades showed a high degree of elastic recovery. DM 60% exhibited most plastic deformation (YP 70.4 MPa) whereas DM 5% (104.6 MPa) and DM 10% (114.7 MPa) least. However, DM 60% gave no coherent tablets, whereas tablet tensile strengths for DM 5% and DM 10% were comparable to Starch 1500®. Also, Heckel profiles were similar to Starch 1500®. For sieved fractions (180–250 and 90–125 μm) of DM 25% and DM 40% originating from the very same batch, YPs were alike, indicating minor effects of particle size. These facts indicate that DM is important for the compaction behavior, and batch-to-batch variability should also be considered. Therefore, pectins of low degree of methoxylation may have a potential as direct compression excipients

    Expression profiling of potato germplasm differentiated in quality traits leads to the identification of candidate flavour and texture genes

    Get PDF
    Quality traits such as flavour and texture are assuming a greater importance in crop breeding programmes. This study takes advantage of potato germplasm differentiated in tuber flavour and texture traits. A recently developed 44 000-element potato microarray was used to identify tuber gene expression profiles that correspond to differences in tuber flavour and texture as well as carotenoid content and dormancy characteristics. Gene expression was compared in two Solanum tuberosum group Phureja cultivars and two S. tuberosum group Tuberosum cultivars; 309 genes were significantly and consistently up-regulated in Phureja, whereas 555 genes were down-regulated. Approximately 46% of the genes in these lists can be identified from their annotation and amongst these are candidates that may underpin the Phureja/Tuberosum trait differences. For example, a clear difference in the cooked tuber volatile profile is the higher level of the sesquiterpene α-copaene in Phureja compared with Tuberosum. A sesquiterpene synthase gene was identified as being more highly expressed in Phureja tubers and its corresponding full-length cDNA was demonstrated to encode α-copaene synthase. Other potential ‘flavour genes’, identified from their differential expression profiles, include those encoding branched-chain amino acid aminotransferase and a ribonuclease suggesting a mechanism for 5′-ribonucleotide formation in potato tubers on cooking. Major differences in the expression levels of genes involved in cell wall biosynthesis (and potentially texture) were also identified, including genes encoding pectin acetylesterase, xyloglucan endotransglycosylase and pectin methylesterase. Other gene expression differences that may impact tuber carotenoid content and tuber life-cycle phenotypes are discussed

    A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy

    Get PDF
    Background: The mechanical properties of parenchyma cell walls and the strength and extension of adhesion areas between adjacent cells, jointly with cell turgor, are main determinants of firmness of fleshy fruits. These traits are modified during ripening leading to fruit softening. Cell wall modifications involve the depolymerisation of matrix glycans and pectins, the solubilisation of pectins and the loss of neutral sugars from pectin side chains. These changes weaken the cell walls and increase cell separation, which in combination with a reduction in cell turgor, bring about textural changes. Atomic force microscopy (AFM) has been used to characterize the nanostructure of cell wall polysaccharides during the ripening and postharvest storage of several fruits. This technique allows the imaging of individual polymers at high magnification with minimal sample preparation. Scope and approach: This paper reviews the main features of the cell wall disassembly process associated to fruit softening from a nanostructural point of view, as has been provided by AFM studies. Key findings and conclusions: AFM studies show that pectin size, ramification and complexity is reduced during fruit ripening and storage, and in most cases these changes correlate with softening. Postharvest treatments that improve fruit quality have been proven to preserve pectin structure, suggesting a clear link between softening and pectin metabolism. Nanostructural characterization of cellulose and hemicellulose during ripening has been poorly explored by AFM and the scarce results available are not conclusive. Globally, AFM could be a powerful tool to gain insights about the bases of textural fruit quality in fresh and stored fruits

    An overview of the recent developments on fructooligosaccharide production and applications

    Get PDF
    Over the past years, many researchers have suggested that deficiencies in the diet can lead to disease states and that some diseases can be avoided through an adequate intake of relevant dietary components. Recently, a great interest in dietary modulation of the human gut has been registered. Prebiotics, such as fructooligosaccharides (FOS), play a key role in the improvement of gut microbiota balance and in individual health. FOS are generally used as components of functional foods, are generally regarded as safe (generally recognized as safe status—from the Food and Drug Administration, USA), and worth about 150€ per kilogram. Due to their nutrition- and health-relevant properties, such as moderate sweetness, low carcinogenicity, low calorimetric value, and low glycemic index, FOS have been increasingly used by the food industry. Conventionally, FOS are produced through a two-stage process that requires an enzyme production and purification step in order to proceed with the chemical reaction itself. Several studies have been conducted on the production of FOS, aiming its optimization toward the development of more efficient production processes and their potential as food ingredients. The improvement of FOS yield and productivity can be achieved by the use of different fermentative methods and different microbial sources of FOS producing enzymes and the optimization of nutritional and culture parameter; therefore, this review focuses on the latest progresses in FOS research such as its production, functional properties, and market data.Agencia de Inovacao (AdI)-Project BIOLIFE reference PRIME 03/347. Ana Dominguez acknowledges Fundacao para a Ciencia e a Tecnologia, Portugal, for her PhD grant reference SFRH/BD/23083/2005
    corecore