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Abstract Over the past years, many researchers have sug-
gested that deficiencies in the diet can lead to disease states
and that some diseases can be avoided through an adequate
intake of relevant dietary components. Recently, a great inter-
est in dietary modulation of the human gut has been registered.
Prebiotics, such as fructooligosaccharides (FOS), play a key
role in the improvement of gut microbiota balance and in
individual health. FOS are generally used as components of
functional foods, are generally regarded as safe (generally
recognized as safe status—from the Food and Drug Admin-
istration, USA), and worth about 150€ per kilogram. Due to
their nutrition- and health-relevant properties, such as moder-
ate sweetness, low carcinogenicity, low calorimetric value,
and low glycemic index, FOS have been increasingly used
by the food industry. Conventionally, FOS are produced
through a two-stage process that requires an enzyme produc-
tion and purification step in order to proceed with the chemical
reaction itself. Several studies have been conducted on the
production of FOS, aiming its optimization toward the devel-
opment of more efficient production processes and their po-
tential as food ingredients. The improvement of FOS yield and
productivity can be achieved by the use of different fermen-
tative methods and different microbial sources of FOS-
producing enzymes and the optimization of nutritional and
culture parameter; therefore, this review focuses on the latest

progresses in FOS research such as its production, functional
properties, and market data.
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Introduction

While food has long been used to improve health, knowledge
of health is now being used to improve food. The first sys-
tematic exploration of the positive aspects of food functional-
ity was undertaken in Japan where research programs funded
by the Japanese government during the 1980s focused on the
ability of some foods to influence physiological functions
(Clydesdale 2004; Howlett 2008).

A narrow analysis of the topic suggests that all food is
functional since it provides basic energy and nutrients essen-
tial for surviving. Yet, the term “functional food” in use
nowadays implies that such food carries broader health bene-
fits than just basic nutrition. Food science has evolved from
solving problems related to nutritional deficiencies to design-
ing foods that have the potential to induce health benefits and
reduce the risk of disease (Clydesdale 2004).

Building a path to an optimum nutrition, which is an
aspiring long-term goal, functional food is a newsworthy
and stimulating concept, as much as it is supported by con-
sensual scientific data generated by the development of func-
tional food science aimed at the improvement of dietary
guidelines that integrate new information on the food elements
and body function interactions (Roberfroid 2000a).

The gut is a body organ with major influence in several
body functions; thus, it became a clear target for the evolution
of functional food, and over the past decade, we have
witnessed an increase of new information concerning the
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interface between the diet and its possible role on gut micro-
biota and, consequently, in health and disease. This has led to
great efforts in the development of strategies aimed at dietary
modulation of the microbiota composition and activity,
achieved by the use of prebiotics, probiotics, and a combina-
tion of both (synbiotics; Howlett 2008; Szajewska 2010; De
Preter et al. 2011).

Various non-digestible carbohydrates have been tested for
their effect on the microbial community. Among them, the
functional oligosaccharides, which are intermediate in nature
between simple sugars and polysaccharides, present important
physicochemical and physiological properties beneficial to the
consumer’s health, behaving as dietary fibers and prebiotics,
and therefore their use as food ingredients has increased
rapidly (Simmering and Blaut 2001; Kunz and Rudloff
2006; Mussatto and Mancilha 2007).

F O S , g a l a c t o o l i g o s a c c h a r i d e s ( G O S ) ,
isomaltooligosaccharides (IMO), soybean oligosaccharides,
xylooligosaccharides (XOS), and maltitol are among the com-
monly used prebiotics, FOS being the most studied and the
best implemented oligosaccharides in the European market
(Chen et al. 2000; Qiang et al. 2009; Nobre et al. 2013).

Prebiotics

According to the FAO, “a prebiotic is a non-viable food
component that confers a health benefit to the host associated
with the modulation of the microbiota” (Gibson et al. 2004;
Piñeiro et al. 2008).

Prebiotics can be used as a strategy to improve the
balance of intestinal bacteria differing from the probiotic
approach in which exogenous strains are included in
food and ultimately reach the individual’s intestinal
tract. These compounds selectively stimulate the prolif-
eration and/or activity of beneficial groups of bacteria
that exist in the intestinal microbiota. As a consequence,
they can constitute a more practical and efficient way to
manipulate the gut microbiota compared to probiotics.
However, if for any reason, such as disease, aging,
antibiotic, or drug therapy, the appropriate health-
promoting species are not present in the bowel, the prebi-
otic is unlikely to be effective (Playne and Crittenden 2004;
Macfarlane et al. 2008).

The gut microbiota ferments a range of substances, mainly
provided by the diet, which cannot be digested by the host in
the small intestine and are available for fermentation by the
colonic microbiota. These include resistant starch, non-starch
polysaccharides (dietary fiber), oligosaccharides, proteins,
and amino acids, among others. In a typical adult, about
100 g of food ingested each day reaches the large intestine
and therefore is susceptible to fermentation by the gut micro-
biota. Key criteria for a food ingredient to be classified as a

prebiotic are (1) it must not be hydrolyzed or absorbed in the
upper part of the gastrointestinal tract so that it reaches the
colon in significant amounts and (2) it must be a selective
substrate for one or more beneficial bacteria that are stimulat-
ed to grow. Furthermore, prebiotics may also induce local (in
the colon) or systemic effects through bacterial fermentation
products that are beneficial to host health (Manning and
Gibson 2004; Howlett 2008; De Preter et al. 2011).

These ingredients are normally restricted to certain carbo-
hydrates, i.e., non-digestible oligosaccharides (NDO) that are
distinguished from other carbohydrates for being resistant to
digestion in the stomach and small intestine (Playne and
Crittenden 2004).

Most prebiotics and prebiotic candidates that have been
identified are NDO and are obtained either by extraction from
plants (e.g., chicory inulin), possibly followed by an enzymat-
ic hydrolysis (e.g., oligofructose from inulin), or by synthesis
(by transglycosylation reactions) frommono- or disaccharides
such as sucrose (FOS) or lactose (GOS; Crittenden and Playne
1996). Nevertheless, other NDO including XOS, IMO, and
soybean oligosaccharides have also been evaluated for their
prebiotic effect (Gibson and Roberfroid 1995; Simmering and
Blaut 2001).

Apart from their potential to modify the gut microbiota and
its metabolic activities in a beneficial way, many other helpful
and useful effects of prebiotics are being investigated. These
include their ability to modulate gut function and transit time;
to activate the immune system; to increase the production of
butyric and other short-chain fatty acids; to increase the ab-
sorption of minerals, such as calcium and magnesium; and to
inhibit lesions that are precursors of adenomas and carcino-
mas. Thus, prebiotics can potentially reduce some of the risk
factors involved in the causes of colorectal diseases and re-
duce the risk of diseases such as cardiovascular disease, colon
cancer, and obesity. Strategies for developing prebiotic prod-
ucts aim to provide specific fermentable substrates for bene-
ficial bacteria (bifidobacteria and lactobacilli). These may
provide adequate amounts and proportions of fermentation
products, especially in the lower part of the colon where the
effects are believed to be most favorable. Although the asso-
ciation with past outbreaks will remain conjectural, it is rea-
sonable to suggest that prebiotic administration may possibly
exert very important prophylactic effects against gut
pathogens. Even as part of a more complex story, the
potential of prebiotics is too large to be ignored (Ziemer
and Gibson 1998; Howlett 2008; Qiang et al. 2009; Shimizu
and Hachimura 2011).

Fructooligosaccharides as Prebiotics

FOS is a common name for fructose oligomers, and these are
usually understood as inulin-type oligosaccharides. They
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constitute a series of homologous oligosaccharides derived
from sucrose usually represented by the formula GFn, which
are mainly composed of 1-kestose (GF2), nystose (GF3), and
1F-β- fructofuranosyl nystose (GF4), in which two, three, and
four fructosyl units are bound at the β-2,1 position of
glucose, respectively, as shown in Fig. 1 (Yun 1996;
Lee et al. 1999).

FOS Functional Properties

FOS have a low sweetness intensity since they are only about
one third as sweet as sucrose, supplying small amounts of
energy, approximately 0–3 kcal/g of sugar substitute. This
property is quite useful in the various kinds of foods in which
the use of sucrose is restricted by its high sweetness. FOS are
also calorie-free since they are scarcely hydrolyzed by the
digestive enzymes and not utilized as an energy source in
the body; thus, they are safe for diabetics. Also, prebiotics
are known to prevent the colonization of human gut by path-
ogenic microorganisms because they encourage the growth of
beneficial bacteria (Roberfroid 2000b; Mishra and Mishra
2013). As FOS cannot be digested by the enzymes of the
small intestine, they are fermented in the large intestine to
selectively stimulate the growth of probiotic-like bacteria that
are part of the commensal gut microbiota and then produce
short-chain fatty acids (SCFAs), mainly acetate, propionate,
and butyrate (Yun 1996; Yu Wang et al. 2010). It is also
importance to notice that long-chain FOS may exert a prebi-
otic effect in more distal colonic regions compared with the
lower-molecular-weight FOS, which may be more quickly
fermented in the saccharolytic proximal bowel (Manning
and Gibson 2004).

As previously mentioned, these compounds have the ca-
pacity of promoting a good balance of intestinal microbiota
and decrease gastrointestinal infections. The beneficial phys-
iologic functions that have been reported for FOS are briefly
summarized below.

Protection Against Colon Cancer

Prebiotics have been postulated to be protective against the
development of colon cancer, which is the second most prev-
alent cancer in humans. It is known that several species of
bacteria commonly found in the colon produce carcinogens
and tumor promoters from the metabolism of food compo-
nents. There have been several studies on the use of prebiotics
in cancer prevention mainly focusing on animal models, but
the “dietary fiber hypothesis” for protection against colorectal
cancer was advanced by Burkitt (1969) based on epidemio-
logical evidence supporting a relationship between diet and
colon health. These findings showed lower rates of colorectal
cancer in Africa compared to industrializedWestern countries,
where traditional diets consisted of high amounts of unrefined
fiber and high intakes of refined carbohydrates, respectively
(Manning and Gibson 2004; Lim et al. 2005a).

The two main types of fermentation that are carried out in
the gut are saccharolytic and proteolytic. The saccharolytic
activity is more favorable than the proteolytic one due to the
type of metabolic end products that are formed, such as
SCFAs, acetate, propionate, and butyrate. Butyrate is an im-
portant source of energy and is thought to have antitumor
properties. Many studies were performed to demonstrate such
activity, and according to Kim et al. (1982), butyrate is a
protective agent against colon cancer by promoting cell dif-
ferentiation. Bugaut and Bentéjac (1993) reported that buty-
rate is used by the epithelial cells of the colon mucosa as an
energy source, being also a growth factor, and recent preclin-
ical studies demonstrated that it might be chemopreventive in
carcinogenesis (Scheppach and Weiler 2004). In addition to
butyrate, propionate can have anti-inflammatory effects on
colon cancer cells (Munjal et al. 2009).

Immunomodulatory Effect

Functional foods are reported to enhance the immunity of the
consumers. Indeed, the dietary components and their fermen-
tation metabolites are in close contact with the gut-associated
lymphoid tissue (GALT), which is the biggest tissue in the
immune system comprising 60 % of all lymphocytes in the
body (Delgado et al. 2011; Saad et al. 2013). It has been
estimated that about 10–60 g/day of dietary carbohydrate
reaches the colon acting like a growth factor to particular
commensal bacteria, which inhibit the adherence and invasion
of pathogens in the colonic epithelia by competing for the
same glycoconjugates present on the surface of epithelial

Fig. 1 Structures of 1-kestose (GF2, left), nystose (GF3, center), and
fructofuranosyl nystose (GF4, right)
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cells, altering the colonic pH, favoring the barrier function,
improving the mucus production, producing SCFAs, and in-
ducing cytokine production (Korzenik and Podolskyl 2006).

Many researchers recognized the effect of prebiotics oral
administration. In 1997, Pierre and co-workers (Pierre et al.
1997) reported the development of GALT associated with
inulin and FOS intake. Furthermore, Hosono et al. (2003)
stated that inulin and FOS were able to modulate various
parameters of the immune system. Schley and Field (2002)
have reviewed some evidences of the immune-enhancing
effects of dietary fibers and prebiotic and identified for the
first time the gene markers associated with the physiological
effects of a particular FOS on a host animal, thus making it
possible to clarify the mechanisms behind the immunomodu-
latory effects of FOS.

Obesity and Diabetes

Fiber intakes are associated with increased satiety and lower
body weight. Beyond glycemic control, the fiber’s fermenta-
tion in the intestine may also influence satiety. However, these
mechanisms are not completely understood. One hypothesis is
that the production of SCFAs influences postprandial glucose
response by reducing fat competition for glucose disposal. On
the other hand, another hypothesis relies on the idea that
fermentation of SCFAs influences gut hormones and gastric
motility (Brighenti et al. 2006; Nilsson et al. 2008). Also,
other scientific data suggest that the decrease in food intake
associated with prebiotics feeding in animals might be linked
to the modulation of gastrointestinal peptides involved
in the regulation of food intake (Druce et al. 2004; Chaudhri
et al. 2008).

Obesity and obesity-related type II diabetes are typical
diseases of the modern Western society. Current recommen-
dations for the management of type II diabetes and obesity
include an increase in dietary fiber intake. Dietary fiber’s
viscose and fibrous structure can control the release of
glucose with time in the blood, thus helping in the proper
control and management of diabetes mellitus and obesity
(Bennett et al. 2006).

Improving Mineral Adsorption

Another interesting feature of FOS is their positive effect on
mineral absorption. Mineral deficiencies remain an important
nutritional issue in the World. Calcium (Ca) intake in many
underdeveloped countries is below the recommended daily
allowance, which leads to progressive bone loss. Ca is critical
in achieving optimal peak bone mass and modulating the rate
of bone loss associated with aging. Then, if Ca intake is not
enough to offset obligatory losses, acquired skeletal mass
cannot be maintained, leading to osteoporosis, a major public
health problem. Magnesium is the second most abundant

intracellular cation in vertebrates, and its deficiency has been
implicated as a risk factor for osteoporosis. Another mineral
with a low intake is iron (Fe), which is a major cause of
anemia. The importance of zinc (Zn) nurture for growth and
development has been widely documented. Marginal Zn
deficiency is suspected to be widespread in populations
heavily dependent on cereal-based diets containing few ani-
mal products (Baba et al. 1996; Roberfroid et al. 2010; Yu
Wang et al. 2010).

Several mechanisms have been proposed to elucidate the
possible roles of FOS in improving mineral absorption. Even
though mineral absorption generally occurs in the upper part
of the intestine, it seems that, after consumption of FOS, the
major site of action leading to improved bioavailability of
minerals is the large intestine. The main action of FOS is
mainly associated with their fermentation by resident micro-
biota. SCFAs decrease luminal pH and thus create an acidic
environment more favorable for mineral solubility (Gudiel-
Urbano and Goñi 2002; YuWang et al. 2010). Another way to
contribute to the enhanced mineral absorption is the trophic
effect of prebiotics on the gut (cell growth and functional
enhancement of the absorptive area). It has been suggested
that this is mediated by an increased production of butyrate
and/or certain polyamines (Roberfroid 1993; Raschka and
Daniel 2005).

Effects on Serum Lipid and Cholesterol Concentrations

Since cardiovascular risk is the major public health concern in
many countries and accounts for more deaths than any other
disease or group of diseases, the food industry is increasingly
interested in the development of functional foods that modu-
late blood lipids, such as cholesterol and triglycerides
(Manning and Gibson 2004; Qiang et al. 2009).

Many attempts have been made to control serum triacyl-
glycerol (TAG) concentrations through the modification of
dietary habits. The hypotriglyceridemic effect of non-
digestible but fermentable carbohydrates, including resistant
starch or FOS, has been described by Glore et al. (1994) and
Jackson et al. (1999) in humans and by Tokunaga et al. (1986)
and Yamamoto et al. (1999) in animals.

Ingredients showing a prebiotic effect are able to modulate
hepatic lipid metabolism in rats or hamsters, resulting in
changes in either TAG accumulation in the liver (steatosis)
or serum lipids. The decrease in TAG synthesis and the
accumulation of dietary prebiotics compounds could be linked
to several events. First, a decrease in glycemia could be part of
the process since glucose (together with insulin) is a driver of
lipogenesis. Secondly, the SCFAs produced through the fer-
mentation process could play a role in the regulation of lipid
metabolism (Delzenne and Kok 2001; Delzenne et al. 2002).

Among several studies, Levrat et al. (1994) and Fiordaliso
et al. (1995) reported a decrease in total serum cholesterol after
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dietary supplementation with inulin (10 %) in mice or rats.
This is accompanied by a significant decrease in the hepatic
cholesterol content. The authors suggested that the decrease in
serum cholesterol could reflect a decrease in TAG-rich
lipoproteins.

FOS Occurrence

FOS are found in trace amounts as natural components
in fruits, vegetables, and honey. As a series of fructose
oligomers and polymers derived from sucrose, they oc-
cur in many higher plants as reserve carbohydrates. Aspara-
gus, sugar beet, garlic, chicory, onion, Jerusalem artichoke,
wheat, honey, banana, barley, tomato, and rye are well-known
sources of FOS (Yun 1996; Sangeetha et al. 2005a; Mussatto
and Mancilha 2007).

For most of these sources, FOS concentrations range be-
tween 0.3 and 6%; for chicory, these values are between 5 and
10 %, while in Jerusalem artichoke they can reach 20 %.
Based on the usual consumption of these natural sources, an
average daily consumption of FOS of approximately 13.7 mg/
kgbody weight per day or 806 mg/day has been estimated
(Voragen 1998).

FOS Production

FOS represent one of the major classes of bifidogenic oligo-
saccharides in terms of their production volume. They can be
produced by the hydrolysis of inulin or by the
transfructosylation of sucrose. The FOS mixture obtained by
the enzymatic hydrolysis of inulin closely resembles the mix-
ture produced by the transfructosylation process, although
slightly different end products are obtained as not all of the
β(1→2)-linked fructosyl chains end with a terminal glucose.
Additionally, the oligosaccharide mixture produced from inu-
lin hydrolysis contains longer fructo-oligomer chains
than that produced by the sucrose transfructosylation
process. In this process, FOS are produced from the
disaccharide sucrose using enzymes with transfructosylation
activity. These enzymes are invertase (β-fructofuranosidase
fructohydrolase, FFase, EC 3.2.1.26) and sucrase (sucrose
fructosyltransferase, FTase, EC 2.4.1.9), which are
mainly derived from fungal and bacterial sources. A
high concentration of the starting substrate is required
for efficient transfructosylation. In this reaction, FOS are
formed, namely, kestose, nystose, and fructofuranosyl
nystose (Fig. 1), but also some by-products such as
glucose and small amounts of fructose (Brenda 2005;
Crittenden and Playne 1996; Singh and Singh 2010;
Saad et al. 2013).

FOS Microbial Production—Transfructosylation Enzymes

The commercially available FOS are produced through the
enzymatic synthesis from sucrose by microbial enzymes with
transfructosylation activity. Some bacterial strains have been
reported to produce such enzymes. On the other hand, several
fungal strains, such as Aspergillus sp., Aureobasidium sp.,
and Penicillium sp., are known to produce extracellular and/or
intracellular enzymes with transfructosylation activity
(Table 1).

Many authors have reported the purification and character-
ization of FOS-producing enzymes from various sources and
by different microorganisms (bacteria and fungi; Hayashi
et al. 1992; L’Hocine et al. 2000; Park et al. 2001; Nguyen
et al. 2005; Jedrzejczak-Krzepkowska et al. 2011; Risso et al.
2012). Although these proteins differ in their subunit struc-
ture, molecular weight, degree of glycosylation, chemical
susceptibility, and substrate specificity, they all display both
hydrolytic and transfer activities. The same microorganism
can even produce several enzymes with transfructosylation
activity holding different characteristics (Yoshikawa et al.
2007).

There is still a dispute in the scientific community regard-
ing the nomenclature of FOS-producing enzymes. Some re-
searchers use the term β-fructofuranosidase (FFase, EC.
3.2.1.26; Nguyen et al. 1999; Sheu et al. 2001), whereas
others designate it as fructosyltransferase (FTase, EC.2.4.1.9;
Yun et al. 1997; Sangeetha et al. 2004; Vandáková et al. 2004).
The latter denomination is probably due to the fact that FTase
activity was originally found from the side action in the course
of FFase preparation when acting on a high concentration of
sucrose (Straathof et al. 1986; L’Hocine et al. 2000).

Transfructosylating activity acts on sucrose by cleaving the
β(1,2) linkage and transferring the fructosyl group to an
acceptor molecule such as sucrose, releasing glucose. This
reaction yields FOS, i.e., fructose oligomers, in which
fructosyl units are bound at the β(2,1) position of sucrose
(Belghith et al. 2012). Although FFase is generally known as
an enzyme catalyzing the hydrolysis of sucrose, some FFases
have much higher transfructosylating activity (U t) than hy-
drolyzing activity (U h). A wide variety of fungi produce
FFases, but the activity ratios (U t/Uh) of their enzymes vary
significantly (Sangeetha et al. 2005a; Yoshikawa et al. 2006).
Fructosyl-transferring enzymes have been purified and char-
acterized from higher plants, such as asparagus (Shiomi
1982), onion (Fujishima et al. 2005), Jerusalem artichoke
(Koops and Jonker 1994), and from different microorganisms
(fungi and bacteria) such as Aspergillus niger (L’Hocine et al.
2000), Aspergillus japonicus (Hayashi et al. 1992),
Aureobasidium pullulans (Yoshikawa et al. 2006), Bacillus
macerans (Park et al. 2001), and Candida utilis (Chávez et al.
1997). Although these proteins differ in their subunit struc-
ture, molecular weight, degree of glycosylation, chemical
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susceptibility, and substrate specificity, they all display both
hydrolytic and transfer activities (Ghazi et al. 2007). Fungal
FTases have molecular masses ranging between 180,000 and
600,000 and are homopolymers with two to six monomer
units. Some studies stated the optimum temperature and pH
for these enzyme activities between 50 and 60 °C and from 4.5
to 6.5, respectively (Madlová et al. 2000; Maiorano et al.
2008).

There are several studies reporting the characteristics of
transfructosylation enzymes produced by fungi, mainly
Aureobasidium sp. and Aspergillus sp. Antošová et al.
(2002) reported U t in A . pullulans CCY 27-1-1194 in the
extracellular medium and in the whole cells. In their study, a
maximum FTase U t of 131,000 U dm−3 (131 U mL−1) re-
leased into the cultivation medium, after four cultivation days,
was reported. They also reported that with an initial sucrose
concentration of 200 g L−1, an FTase U t of 80,000 U dm−3

(80 U mL−1) is achieved. In 2008, Antošová et al. (2008)
reported the chromatographic separation of an intracellular
FTase from A . pullulans . The isolated enzyme exhibited both
U h and U t activities, the U t being higher in the sucrose
concentration range tested (10–600 g L−1) and completely

dominating at higher sucrose concentrations. Yoshikawa
et al. (2006) have reported five FFase extracted from the cell
wall of A . pullulans with high U t. This study also suggested
that the expression of FFase I was not repressed by glucose,
but those of FFases II–V were strongly inhibited in the pres-
ence of glucose, considering that FFase I played a key role in
FOS production by this fungus, whereas FFase IV may func-
tion as a FOS-degrading enzyme with its strong hydrolyzing
activity.

Hayashi et al. (1992) identified a FFase produced by A.
japonicus and optimized the cultural condition for the pro-
duction of the enzyme and the enzymatic reaction conditions
for the industrial utilization of the strain to produce FOS. Later
on, FFase activity in A . japonicus was also reported by Chen
(1995); a maximum enzyme production of 910 U mL−1 was
achieved. Wang and Zhou (2006) isolated an A . japonicus
strain from soil and investigated the optimal conditions for
FFase, reaching an activity of 55.42 U mL−1 at pH 5.5 and
30 °C. Wallis et al. (1997) identified two FFase secreted by A.
niger. L’Hocine et al. purified and partially characterized a
FTase and a FFase from the crude extract of A . niger. This
strain showed very high enzyme productivity and high FTase

Table 1 Microbial sources of enzymes with transfructosylation activity: FOS-producing enzymes

Source Microorganism Enzyme Reference

Fungal transfructosylation enzyme Aureobasidium pullulans Intra- and extracellular FTase Yun et al. (1997)

Intra- and extracellular FTase Sangeetha et al. (2004a)

Intra- and extracellular FTase Vandáková et al. (2004)

Intracellular FTase Lateef et al. (2007)

Periplasmic FFase Yoshikawa et al. (2006)

Extracellular FTase Dominguez et al. (2012)

Aspergillus aculeatus FTase from commercial enzyme
preparation—Pectinex Ultra SP-L

Nemukula et al. (2009)

Ghazi et al. (2005)

Ghazi et al. (2007)

Aspergillus flavus Extracellular FTase Ganaie et al. (2013)

Aspergillus japonicus Intra- and/or extracellular FFase Chen and Liu (1996)

Intra- and/or extracellular FFase Wang and Zhou (2006)

Extracellular FFase Mussatto et al. (2009)

Extracellular FFase Mussatto and Teixeira (2010)

Aspergillus niger Extracellular FFase Wallis et al. (1997)

Intra- and extracellular FFase Nguyen et al. (1999)

Intra- and/or extracellular FTase L’Hocine et al. (2000)

Extracellular FTase Ganaie et al. (2013)

Aspergillus oryzae Extracellular FTase Sangeetha et al. (2004a)

Extracellular FTase Sangettha et al. (2005a)

Aspergillus terreus Extracellular FTase Ganaie et al. (2013)

Penicillium citrinum Intra- and/or extracellular enzyme Lim et al. (2005b)

Penicillium islandicum Extracellular FTase Ganaie et al. (2013)

Bacterial transfructosylation enzyme Bacillus macerans Extracellular transfructosylation enzyme Park et al. (2001)

Lactobacillus reuteri Intra and/or extracellular FTase van Hijum et al. (2002)

Zymomonas mobilis Extracellular levansucrase Bekers et al. (2002)
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activity; however, the enzyme used in the crude state also
showed hydrolytic activity. Balasubramaniem et al. (2001)
reached a maximum FFase activity of 149 U L−1 h−1, this
enzyme being produced by A . niger. Nguyen et al. (2005)
purified an intracellular FFase produced by A . niger and
estimated its molecular mass to be in the range from 120 to
130 kDa. Extracellular FTase activity in Aspergillus oryzae
was identified by Sangeetha et al. (2004b), with a molecular
mass of 116.3 kDa. Later on, the same authors reported an
FFase activity in that same strain in the range of 15±
2 U mL−1 min−1 (Sangeetha et al. 2005a).

There are mainly two methods that can be used to produce
transfructosylation enzymes and FOS by fermentation, name-
ly, by submerged fermentation (SmF) or by solid state fer-
mentation (SSF). These two methods will be further discussed
in the following sections.

FOS Production by SmF

The most common and studied method to produce FOS is by
the transfructosylation of sucrose in a two-stage process,
schematically represented in Fig. 2, the enzyme(s) being pro-
duced by SmF in the first stage. This is also the usual process
used to produce the FOS that are currently available on the
market (Singh and Singh 2010).

Most studies on the experimental conditions for enzyme
production are mainly based on shake-flask experiments, and

the work carried out in bioreactors is unusual. The variables
generally studied to define the best operational conditions for
enzyme production are the carbon and nitrogen sources, their
concentrations, time of cultivation, agitation, and aeration
rates. Other important factors are related with the addition of
different mineral salts, small amounts of amino acids, poly-
mers, and surfactants (Maiorano et al. 2008).

Chen and Liu (1996) evaluated the effect of various carbon
and nitrogen sources in enzyme production and found that
sucrose at 25 % (w /v ) and yeast extract were the best ones,
respectively. Later on, Antošová et al. (2002) obtained the
highest FTase activity using sucrose at 350 g L−1 and found
that biomass production was not influenced by sucrose con-
centration in the range from 50 to 350 g L−1. Vandáková et al.
(2004) also studied the effect of sucrose on FTase production
by Aerobasidium pullulans and reported that sucrose content
did not influence the total production of FTase. However, high
sucrose concentrations resulted in high specific activities of
the cells.

The effects of inorganic salts were reported by various
authors. Chen and Liu (1996) studied the effect of inorganic
salts and found that the addition of MgSO4⋅7H2O and K2HPO4

shifted the morphology of the fungal growth from filamentous
to pellet form without affecting FFase production. The mor-
phology of fungal growth can range from dispersed mycelia to
compact pellets. Control of mycelia morphology in fermenta-
tions is often a prerequisite for industrial applications. Although

Fig. 2 Schematic representation
of the two-stage FOS production
process by SmF (adapted from
Sangeetha et al. 2005c)
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fungus, grown in the form of mycelia, may have a high specific
growth rate, the growth of fungus in the form of pellets is more
attractive to many industrial fermentation processes from the
perspective of reducing the power input needed for adequate
gas dispersion and mixing (Metz and Kossen 1977; Chen and
Liu 1996). K2HPO4 is described as a microelement source for
cell growth, as well as a buffering reagent. Its optimal concen-
tration ranges between 4g L−1 (Sangeetha et al. 2005a, b) and
5 g L−1 (Vandáková et al. 2004; Shin et al. 2004a; Lim et al.
2005b). Mg2+ affects the permeability of the cell wall for A .
pullulans (Vandáková et al. 2004), and its optimal concentra-
tion varies from 0.3 g L−1 (Sangeetha et al. 2005a, b) to 2 g L−1

(Balasubramaniem et al. 2001). NaNO3 is the most common
source of inorganic nitrogen in transfructosylation enzymes
production by fungi and can be employed in concentrations
from 2 g L−1 (Lim et al. 2005b) to 25 g L−1 (Dhake and Patil
2007). Other ions, such as FeSO4 and CuSO4, can also be
added to the medium with positive effects, such as increasing
FFase activity and FOS production (Balasubramaniem et al.
2001; Lim et al. 2005b; Wang and Zhou 2006).

The effect of the medium pH in FTase production and
microorganism growth has been reported. pH of 5.5 was
found to be the best initial value for FTase production by A.
oryzae CFR202 (Sangeetha et al. 2005a, b), A. japonicus
JN19 (Wang and Zhou 2006), and Penicillium purpurogenum
(Dhake and Patil 2007).

The FOS production yield by A . pullulans in a two-stage
process can vary between 44.0 % (gFOS/g sucrose; Shin et al.
2004b) and 62.0 % (gFOS/g sucrose; Yoshikawa et al. 2008). For
A . japonicas , these values can vary between 55.8 % (gFOS/
g sucrose; Wang and Zhou 2006) and 61.0 % (gFOS/g sucrose;
Chiang et al. 1997), whereas for A. niger, values ranging
between 24.0 % (gFOS/g sucrose; Nguyen et al. 1999) and
70.0 % (gFOS/g sucrose; Maldová et al. 1999) can be expected.
On the other hand, Sangeetha et al. (2005a, b) reported FOS
production yield by A . oryzae of 53.0 % (gFOS/g sucrose) to
57.4 % (gFOS/g sucrose).

FOS Production bySSF

Despite most industrial enzymes being produced in SmF, SSF
presents an interesting potential for small-scale units. Some
advantages of this process are the simplicity of operation, high
volumetric productivity, product concentration, and low capital
cost and energy consumption. Moreover, the risk of contami-
nation is reduced. SSF requires low water volume and thus has
a large impact on the economy of the process due to smaller
fermenter size, reduced downstream processing, reduced stir-
ring, and lower sterilization costs (Sangeetha et al. 2005c;
Mussatto and Teixeira 2010). However, there are also some
disadvantages associated with the use of SSF, which have
discouraged the use of this technique for industrial
enzyme production. The main drawbacks are due to the

buildup of gradients—of temperature, pH, moisture, substrate
concentration, or dissolved oxygen—during cultivation,
which are difficult to control under limited water availability,
leading to scale-up engineering problems (Pandey 2003;
Hölker et al. 2004).

The use of low-cost agricultural and agro-industrial resi-
dues as substrates contributes also to the lower capital and
operating costs of SSF as compared to SmF. Several agricul-
tural by-products like cereal bran, corn products, sugarcane
bagasse, and by-products of coffee and tea processing indus-
tries were used as substrates to produce FTase in SSF by A .
oryzae CFR 202 (Sangeetha et al. 2004b). In this study, rice
bran and wheat bran were found to be the substrates that
maximize FTase production, with optimum activity at 60 °C
and pH 6.0. The maximum FOS production (52.0 %, gFOS/
g sucrose) was obtained after 8 h of reaction. Mussatto and
Teixeira (2010) reported the increase of FOS yield and pro-
ductivity by SSF with A . japonicus using agro-industrial
residues as immobilization supports and nutrient sources.
Corn cobs, coffee silverskin, and cork oak were used as
support and nutrient sources. Coffee silverskin was found to
be the one that provided the higher production yield and FFase
activity, reaching 70.0 % (gFOS/g sucrose) after 16 h of reaction.
These authors conducted a similar study with Penicillum
expansum in which the use of low-cost materials including
synthetic fiber, polyurethane foam, stainless steel sponge,
loofah sponge, and cork oak were tested as carriers for fungus
immobilization (Mussatto et al. 2012). Additionally, produc-
tion of FOS and FFase by repeated batch fermentation of P.
expansum immobilized on synthetic fiber was studied. Pro-
duction yields of 87 % (gFOS/g sucrose), 72 % (gFOS/g sucrose),
and 44 % (gFOS/g sucrose) in the three initial cycles (36, 48, and
60 h), respectively, were obtained.

Generally, the most efficient culture media and strain
to produce enzymes in SSF are not the same as those in
SmF, and vice versa (Maiorano et al. 2008). Optimization of
the fermentation medium for β-fructofuranosidase production
by A . niger NRRL 330 in SSF and SmFwas carried out using
a fractional factorial design (Balasubramaniem et al.
2001). The results showed different compositions of
optimized media for SmF and SSF. After the optimiza-
tion procedures, the medium composition for SSF re-
quired twice more sucrose and yeast extract than the medi-
um for SmF, and the productivity in SSFwas about twice that
in SmF.

Table 2 presents a comparison between the FOS production
yields reported in the literature, obtained in various production
studies by either SmF or SSF.

Production of High-Content FOS

Industrial production of FOS carried out with microbial
transfructosylation enzymes was found to give a maximum
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theoretical yield of 55–60 % based on the initial sucrose
concentration (Sangeetha et al. 2005c). This yield cannot be
further increased due to the high amounts of glucose co-
produced during the fermentation, which acts as an inhibitor
(Yun 1996).

Therefore, in order to obtain higher fermentation yields, many
authors have studied the impact of the continuous removal of
glucose and residual sucrose from the medium during the FOS
conversion. Consequently, by increasing the fermentation yields,
a purer final product could be obtained (Nobre et al. 2013).

Table 2 FOS yields obtained using FTase and/or FFase from various fungal strains

Microorganism Production process Reaction time (fungus
cultivation+enzymatic
reaction)

Production yield
(%, gFOS/gsucrose)

Reference

Aureobasidium
pullulans

Two-stage process using isolated
intracellular enzyme produced by SmF

96+25 h 58.0 Yun and Song (1993)

Two-stage process using extracellular
enzyme produced by SmF

48+24 h 55.9 Sangeetha et al. (2004a)

Two-stage process using culture broth
homogenate produced by SmF

96+12 h 56.6 Sangeetha et al. (2004a)

Two-stage process using isolated
intracellular enzyme produced by SmF

72+24 h 53.0 Shin et al. (2004a)

Two-stage process with immobilized cell
(SmF)

72+24 h 44.0 Shin et al. (2004b)

Two-stage process with isolated intracellular
FTase produced by SmF

24+9 h 59.0 Lateef et al. (2007)

Two-stage process using crude FFase
preparation produced by SmF

24+24 h 62.0 Yoshikawa et al. (2008)

One-stage process: present study—SmF 48 h 64.1 Dominguez et al. (2012)

Aspergillus flavus Two-stage process using culture broth
filtrate produced by SmF

120+24 h 63.4 Ganaie et al. (2013)

Aspergillus ibericus One-stage process—SmF 24 h 61.0–64.0 Gomes (2009)

Aspergillus japonicus Two-stage process using immobilized FFase
produced by SmF

28+17 h 61.0 Chiang et al. (1997)

Two-stage process with isolated intracellular
FFase produced by SmF

72+24 h 55.8 Wang and Zhou (2006)

One-stage process using corn cobs as the
solid support—SSF

21 h 66.0 Mussatto et al. (2009)

One-stage process—SmF 24 h 61.0 Mussatto et al. (2009)

One-stage process using coffee silverskin as
the solid support—SSF

16 h 70.0 Mussatto and Teixeira
(2010)

Aspergillus niger Two-stage process with isolated intracellular
and extracellular FFase produced by SmF

24+72 h 24.0–26.0 Nguyen et al. (1999)

Two-stage process using washed cells
produced by SmF

92+8 h 70.0 Madlová et al. (1999)

Two-stage process using culture broth
filtrate produced by SmF

72+24 h 55.8 Ganaie et al. (2013)

Aspergillus oryzae Two-stage process using extracellular
enzyme produced by SmF

120+12 h 54.1 Sangeetha et al. (2004a)

Two-stage process using culture broth
homogenate produced by SmF

96+12 h 53.2 Sangeetha et al. (2004a)

Two-stage process FTase produced by SSF
using corn germ as the solid support

120+8 h 60.0 Sangeetha et al. (2004b)

Two-stage process using extracellular
enzyme produced by SmF

24+18 h 57.4 Sangeetha et al. (2005a)

Two-stage process using whole cells
produced by SmF

24+48 h 53.0 Sangeetha et al. (2005c)

Penicillium expansum One-stage process—SmF 36 h 58.0 Prata et al. (2010)

One-stage process using synthetic fiber as
the solid support: SFF—repeated batch
fermentation

60 h, three cycles First: 87.0 (36 h); second:
72.0 (48 h); third: 44.0
(60 h)

Mussatto et al. (2012)

Penicillium
chrysogenum

Two-stage process using culture broth
filtrate produced by SmF

48+24 h 42.5 Ganaie et al. (2013)
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High FOS production yields adding glucose oxidase to the
reaction media have been reported, and many authors manage
to control this effect and increase FOS production yield
(up to 90–98 %, gFOS/g sucrose) by adding glucose oxi-
dase to the reaction media, which leads to the formation
of gluconic acid, hence reducing the glucose content in
the media (Yun and Song 1993; Sheu et al. 2001; Lin
and Lee 2008).

Other systems aiming glucose removal from the media
have also been studied. For example, Sheu et al. (2002)
reported a complex biocatalyst system with a bioreactor
equipped with a microfiltration module. The system used
mycelia of A . japonicus CCRC 93007 or A . pullulans ATCC
9348 with FFase activity and Gluconobacter oxydans ATCC
23771 with glucose dehydrogenase activity. Calcium carbon-
ate slurry was used to control the pH to 5.5, and gluconic acid
in the reaction mixture was precipitated as calcium gluconate.
Sucrose solution with an optimum concentration of 30 % (w /
v ) was employed as feed for the complex cell system, and
high-content FOS was discharged continuously from a
microfiltration module. The complex system produced more
than 80 % (gFOS/g sucrose) FOS, with the remaining being 5–
7 % glucose and 8–10 % sucrose on a dry weight basis, plus a
small amount of calcium gluconate.

Nishizawa et al. (2001) achieved higher FOS yields with a
simultaneous removal of glucose using a membrane reactor
system with a nanofiltration membrane, through which glu-
cose permeated, but not sucrose and FOS. FOS percentage of
the reaction product was increased to above 90 % (gFOS/
g sucrose), which was much higher than that of the batch reac-
tion product (55–60 %, gFOS/g sucrose). Nonetheless, although
these systems can be more efficient in terms of FOS produc-
tion yield, it is important to notice that they are also more
expensive.

With the same goal, Crittenden and Playne (2002) used a
different approach. In their study, immobilized cells of the
bacterium Zymomonas mobilis were used to remove glucose,
fructose, and sucrose from food-grade oligosaccharide mix-
tures, which were completely fermented within 12 h. The
fermentation end products were ethanol and carbon dioxide,
a minimal amount of sorbitol also being formed. Similarly to
Z . mobilis , Saccharomyces cerevisiae also showed the ability
to ferment some common mono- and disaccharides (fructose,
glucose, galactose, and sucrose) from a mixture of sugars,
while oligosaccharides with four or more monosaccharide
units were not fermented (Yoon et al. 2003; Goulas et al.
2007; Hernández et al. 2009). The microbial treatment seems
to be a good alternative for increasing the percentage of FOS
in a mixture through the removal of mono- and disaccharides,
this process being adequate to be used during the enzymatic
synthesis of FOS. However, the use of microbial treatments
implies a further step of purification for the removal of bio-
mass and metabolic products formed during the fermentation

in order to obtain a FOS product with few contaminants, thus
increasing the production cost. Also, the use of yeast treatment
was found to modify the oligosaccharide composition (Sanz
et al. 2005; Nobre et al. 2013).

Zuccaro et al. (2008) reported that recombinant FTases also
have interesting biocatalytic properties. The combination of
sucrose analogues, as novel substrates (substrate engineering),
and highly active recombinant β-fructofuranosidase from A .
niger (genetic engineering) provided a new powerful tool for
the efficient preparative synthesis of tailor-made saccharides
1-kestose and 1-nystose type.

FOS Market Data

In general, the total cost of developing a conventional new
food product is estimated to be up to 0.75–1.5 million Euros,
while the development and marketing costs of functional food
products may exceed this level by far. Presently, the European
market of functional food is dominated by gut health-targeted
products. Germany, France, UK, and the Netherlands account
for around two thirds of all sales of functional dairy products
in Europe. Functional dairy products have shown an impres-
sive growth, bringing, for example the market volume in
Germany, from around 4 million Euros in 1995 to 317 million
Euros in 2000, of which 228 million Euros account for probi-
otic, prebiotic, and other functional yoghurts and around 89
million Euros for functional drinks. The World demand for
prebiotics is estimated to be around 167,000 tons and 390
million Euros. Among them, FOS, inulin, isomalto-
oligosaccharides, polydextrose, lactulose, and resistant starch
are considered the most popular. In 1995, the global market
for FOS from sucrose was estimated to be 20,000 tons
(Menrad 2003; Siró et al. 2008).

As previously mentioned, at an industrial scale, FOS are
produced enzymatically by two different processes

Table 3 Commercially available food-grade FOS

Substrate Manufacturer Trade name

Sucrose Beghin-Meiji Industries, France Actilight®

Profeed®

Cheil Foods and Chemicals Inc., Korea Oligo-Sugar

GTC Nutrition, USA NutraFlora®

Meiji Seika Kaisha Ltd., Japan Meioligo®

Victory Biology Engineering Co., Ltd.,
China

Beneshine™ P-
type

Inulin Beneo-Orafti, Belgium Orafti®

Cosucra Groupe Warcoing, Belgium Fibrulose®

Sensus, the Netherlands Frutalose®

Nutriagaves de Mexico S.A. de C.V.,
Mexico

OLIFRUCTINE-
SP®
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(transfructosylation of sucrose or hydrolysis of inulin) which
yield slightly different end products. The companies that
commercially produce FOS from sucrose or inulin and their
trade names are listed in Table 3. These FOS products are
provided with a purity level above 95 % (Singh and Singh
2010; Nobre et al. 2013).

The enzymatic synthesis route to FOS using FTase from A .
niger was first developed by Meiji Seika Kaisha Ltd., Japan,
resulting in the launch of the commercial product Meioligo®.
Then, this company also established a joint venture with
Beghin-Meiji Industries, France, to produce FOS
marketed as Actilight®, and also with GTC Nutrition,
USA, to produce FOS under the trade name NutraFlora®
(Singh and Singh 2010). According to the Meiji Holdings
Co., Ltd. Annual Report (2011), they presented total net sales
of almost 21 million Euros and operating incomes of 0.5
million Euros.

Additionally, individual FOS molecules with purities vary-
ing between 80 and 99 % are only available for analytical
purposes. The main companies supplying 1-kestose (GF2),
nystose (GF3), and 1F-β- fructofuranosyl nystose (GF4) are
Sigma Aldrich, Megazyme, and Wako Chemicals GmbH
(Nobre et al. 2013).

Conclusions

Modern consumers are increasingly interested in their personal
health and expect the foods they eat to be—beyond tasty and
attractive—also safe and healthy. Non-digestible carbohydrates
such as dietary fibers, oligosaccharides, and resistant starch have
various physiologic functions, and the effects of many non-
digestible carbohydrates on well-being, better health, and reduc-
tion of the risk of diseases have been well evaluated. Among
functional oligosaccharides, FOS present important physico-
chemical and physiological properties beneficial to the health
of consumers. For this reason, their use as food ingredients has
increased rapidly, presenting a significant growth on the func-
tional food market all over the world. Europe nutraceutics
market is expected to have a share of over 20% until 2017. In
view of the great demand for FOS as food ingredients, the
opportunity exists for the screening and identification of novel
strains capable of producing enzymes with transfructosylation
activity and for developing improved and less expensive pro-
duction methods. In this review, the beneficial effects of FOS
and how they can play a key role in the food market have been
discussed, bearing in mind that more effective less costly pro-
duction methods can be a main advantage in the food industry.
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