82 research outputs found

    Metagenomic analysis of viruses, bacteria and protozoa in irrigation water

    Full text link
    [EN] Viruses (e.g., noroviruses and hepatitis A and E virus), bacteria (e.g., Salmonella spp. and pathogenic Escherichia coli) and protozoa (e.g., Cryptosporidium parvum and Giardia intestinalis) are well-known contributors to food-borne illnesses linked to contaminated fresh produce. As agricultural irrigation increases the total amount of water used annually, reclaimed water is a good alternative to reduce dependency on conventional irrigation water sources. European guidelines have established acceptable concentrations of certain pathogens and/or indicators in irrigation water, depending on the irrigation system used and the irrigated crop. However, the incidences of food-borne infections are known to be underestimated and all the different pathogens contributing to these infections are not known. Next-generation sequencing (NGS) enables the determination of the viral, bacterial and protozoan populations present in a water sample, providing an opportunity to detect emerging pathogens and develop improved tools for monitoring the quality of irrigation water. This is a descriptive study of the virome, bacteriome and parasitome present in different irrigation water sources. We applied the same concentration method for all the studied samples and specific metagenomic approaches to characterize both DNA and RNA viruses, bacteria and protozoa. In general, most of the known viral species corresponded to plant viruses and bacteriophages. Viral diversity in river water varied over the year, with higher bacteriophage prevalences during the autumn and winter. Reservoir water contained Enterobacter cloacae, an opportunistic human pathogen and an indicator of fecal contamination, as well as Naegleria australiensis and Naegleria clarki. Hepatitis E virus and Naegleria fowleri, emerging human pathogens, were detected in groundwater. Reclaimed water produced in a constructed wetland system presented a virome and bacteriome that resembled those of freshwater samples (river and reservoir water). Viral, bacterial and protozoan pathogens were occasionally detected in the different irrigation water sources included in this study, justifying the use of improved NGS techniques to get a comprehensive evaluation of microbial species and potential environmental health hazards associated to irrigation water.This work was supported through a grant funded by the Spanish Ministry of Economy and Competitiveness (MINECO) in the frame of the collaborative international consortium JPIW2013-095-C03-01, JPIW2013-095-C03-02 and JPIW2013-095-C03-03 of the Water Challenges for a Changing World Joint Programming Initiative (Water JPI) Pilot Call and partially by AGL2017-86797-C2-1-R. Silvia Bofill-Mas is a Serra-Hunter fellow at the University of Barcelona.Rusiñol, M.; Martinez-Puchol, S.; Timoneda, N.; Fernandez-Cassi, X.; Pérez-Cataluña, A.; Fernández-Bravo, A.; Moreno-Mesonero, L.... (2020). Metagenomic analysis of viruses, bacteria and protozoa in irrigation water. International Journal of Hygiene and Environmental Health. 224. https://doi.org/10.1016/j.ijheh.2019.113440S22

    Copy number architectures define treatment-mediated selection of lethal prostate cancer clones

    Get PDF
    Despite initial responses to hormone treatment, metastatic prostate cancer invariably evolves to a lethal state. To characterize the intra-patient evolutionary relationships of metastases that evade treatment, we perform genome-wide copy number profiling and bespoke approaches targeting the androgen receptor (AR) on 167 metastatic regions from 11 organs harvested post-mortem from 10 men who died from prostate cancer. We identify diverse and patient-unique alterations clustering around the AR in metastases from every patient with evidence of independent acquisition of related genomic changes within an individual and, in some patients, the co-existence of AR-neutral clones. Using the genomic boundaries of pan-autosome copy number changes, we confirm a common clone of origin across metastases and diagnostic biopsies, and identified in individual patients, clusters of metastases occupied by dominant clones with diverged autosomal copy number alterations. These autosome-defined clusters are characterized by cluster-specific AR gene architectures, and in two index cases are topologically more congruent than by chance (p-values 3.07 × 10-8 and 6.4 × 10-4). Integration with anatomical sites suggests patterns of spread and points of genomic divergence. Here, we show that copy number boundaries identify treatment-selected clones with putatively distinct lethal trajectories

    A functional genetic screen defines the AKT-induced senescence signaling network

    Get PDF
    Exquisite regulation of PI3K/AKT/mTORC1 signaling is essential for homeostatic control of cell growth, proliferation, and survival. Aberrant activation of this signaling network is an early driver of many sporadic human cancers. Paradoxically, sustained hyperactivation of the PI3K/AKT/mTORC1 pathway in nontransformed cells results in cellular senescence, which is a tumor-suppressive mechanism that must be overcome to promote malignant transformation. While oncogene-induced senescence (OIS) driven by excessive RAS/ERK signaling has been well studied, little is known about the mechanisms underpinning the AKT-induced senescence (AIS) response. Here, we utilize a combination of transcriptome and metabolic profiling to identify key signatures required to maintain AIS. We also employ a whole protein-coding genome RNAi screen for AIS escape, validating a subset of novel mediators and demonstrating their preferential specificity for AIS as compared with OIS. As proof of concept of the potential to exploit the AIS network, we show that neurofibromin 1 (NF1) is upregulated during AIS and its ability to suppress RAS/ERK signaling facilitates AIS maintenance. Furthermore, depletion of NF1 enhances transformation of p53-mutant epithelial cells expressing activated AKT, while its overexpression blocks transformation by inducing a senescent-like phenotype. Together, our findings reveal novel mechanistic insights into the control of AIS and identify putative senescence regulators that can potentially be targeted, with implications for new therapeutic options to treat PI3K/AKT/mTORC1-driven cancers.Peer reviewe

    EuroGuiDerm Guideline on the systemic treatment of Psoriasis vulgaris - Part 2 : specific clinical and comorbid situations

    Get PDF
    This evidence- and consensus-based guideline on the treatment of psoriasis vulgaris was developed following the EuroGuiDerm Guideline and Consensus Statement Development Manual. The second part of the guideline provides guidance for specific clinical and comorbid situations such as treating psoriasis vulgaris patient with concomitant psoriatic arthritis, concomitant inflammatory bowel disease, a history of malignancies or a history of depression or suicidal ideation. It further holds recommendations for concomitant diabetes, viral hepatitis, disease affecting the heart or the kidneys as well as concomitant neurological disease. Advice on how to screen for tuberculosis and recommendations on how to manage patients with a positive tuberculosis test result are given. It further covers treatment for pregnant women or patients with a wish for a child in the near future. Information on vaccination, immunogenicity and systemic treatment during the COVID-19 pandemic is also provided.Peer reviewe

    Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method

    Full text link
    [EN] This study was designed to compare the efficiency of the Cryotop and Calibrated plastic inoculation loop (CPIL) devices for vitrification of rabbit embryos on in vitro development and implantation rate, offspring rate at birth and embryonic and fetal losses. CPIL is a simple tool used mainly by microbiologists to retrieve an inoculum from a culture of microorganisms. In experiment 1, embryos were vitrified using a Cryotop device and a CPIL device. There were no significant differences in hatched/hatching blastocyst stage rates after 48 h of culture among the vitrified groups (62±4.7% and 62±4.9%, respectively); however, the rates were significantly lower (P<0.05) than those of the fresh group (95±3.4%). In experiment 2, vitrified embryos were transferred using laparoscopic technique. The number of implanted embryos was estimated by laparoscopy as number of implantation sites at day 14 of gestation. At birth, total offspring were recorded. Embryonic and fetal losses were calculated as the difference between implanted embryos and embryos transferred and total born at birth and implanted embryos, respectively. The rate of implantation and development to term was similar between both vitrification devices (56±7.2% and 50±6.8% for implantation rate and 40±7.1% and 35±6.5% for offspring rate at birth); but significantly lower than in the fresh group (78±6.6% for implantation rate and 70±7.2% for offspring rate at birth, P<0.05). Likewise, embryonic losses were similar between both vitrification devices (44±7.2% and 50±6.8%), but significantly higher than in the fresh group (23±6.6%, P < 0.05). However, fetal losses were similar between groups (10±4.4%, 15±4.8% and 8±4.2%, for vitrified, Cryotop or CPIL and fresh, respectively). These results indicate that the CPIL device is as effective as the Cryotop device for vitrification of rabbit embryos, but at a cost of 0.05 per device.This research was supported by the projects Spanish Research project AGL2014-53405-C2-1-P Comision Interministerial de Ciencia y Tecnologia (FMJ, JSV) and Generalitat Valenciana research program (Prometeo II 2014/036, JSV, FMJ).Marco Jiménez, F.; Jiménez Trigos, ME.; Almela-Miralles, V.; Vicente Antón, JS. (2016). Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method. PLoS ONE. 11(2):1-9. https://doi.org/10.1371/journal.pone.0148661S1911

    Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum

    Get PDF
    Background: Many species belonging to the genus Colletotrichum cause anthracnose disease on a wide range of plant species. In addition to their economic impact, the genus Colletotrichum is a useful model for the study of the evolution of host specificity, speciation and reproductive behaviors. Genome projects of Colletotrichum species have already opened a new era for studying the evolution of pathogenesis in fungi. Results: We sequenced and annotated the genomes of four strains in the Colletotrichum acutatum species complex (CAsc), a clade of broad host range pathogens within the genus. The four CAsc proteomes and secretomes along with those representing an additional 13 species (six Colletotrichum spp. and seven other Sordariomycetes) were classified into protein families using a variety of tools. Hierarchical clustering of gene family and functional domain assignments, and phylogenetic analyses revealed lineage specific losses of carbohydrate-active enzymes (CAZymes) and proteases encoding genes in Colletotrichum species that have narrow host range as well as duplications of these families in the CAsc. We also found a lineage specific expansion of necrosis and ethylene-inducing peptide 1 (Nep1)-like protein (NLPs) families within the CAsc. Conclusions: This study illustrates the plasticity of Colletotrichum genomes, and shows that major changes in host range are associated with relatively recent changes in gene content
    • …
    corecore