56 research outputs found

    The crystal structure of human Rogdi provides insight into the causes of Kohlschutter-Tonz Syndrome

    Get PDF
    Kohlschutter-Tönz syndrome (KTS) is a rare autosomal-recessive disorder of childhood onset characterized by global developmental delay, spasticity, epilepsy, and amelogenesis imperfecta. Rogdi, an essential protein, is highly conserved across metazoans, and mutations in Rogdi are linked to KTS. However, how certain mutations in Rogdi abolish its physiological functions and cause KTS is not known. In this study, we determined the crystal structure of human Rogdi protein at atomic resolution. Rogdi forms a novel elongated curved structure comprising the ?? domain, a leucine-zipper-like four-helix bundle, and a characteristic ??-sheet domain. Within the ?? domain, the N-terminal H1 helix (residues 19-45) pairs with the C-terminal H6 helix (residues 252-287) in an antiparallel manner, indicating that the integrity of the four-helix bundle requires both N- and C-terminal residues. The crystal structure, in conjunction with biochemical data, indicates that the ?? domain might undergo a conformational change and provide a structural platform for protein-protein interactions. Disruption of the four-helix bundle by mutation results in significant destabilization of the structure. This study provides structural insights into how certain mutations in Rogdi affect its structure and cause KTS, which has important implications for the development of pharmaceutical agents against this debilitating neurological disease

    One step creation of multifunctional 3D architectured hydrogels inducing bone regeneration

    Get PDF
    Structured hydrogels showing form stability and elastic properties individually tailorable on different length scales are accessible in a one-step process. They support cell adhesion and differentiation and display growing pore size during degradation. In vivo experiments demonstrate their efficacy in biomaterial-induced bone regeneration, not requiring addition of cells or growth factors

    Evidence of mild founder LMOD3 mutations causing nemaline myopathy 10 in Germany and Austria

    Get PDF
    Objective To expand the clinical and genetic spectrum of nemaline myopathy 10 by a series of Austrian and German patients with a milder disease course and missense mutations in LMOD3. Methods We characterized the clinical features and the genetic status of 4 unrelated adolescent or adult patients with nemaline myopathy. Results The 4 patients showed a relatively mild disease course. They all have survived into adulthood, 3 of 4 have remained ambulatory, and all showed marked facial weakness. Muscle biopsy specimens gave evidence of nemaline bodies. All patients were unrelated but originated from Austria (Tyrol and Upper Austria) and Southern Germany (Bavaria). All patients carried the missense variant c.1648C>T, p.(Leu550Phe) in the LMOD3 gene, either on both alleles or in trans with another missense variant (c.1004A>G, p.Gln335Arg). Both variants were not reported previously. Conclusions In 2014, a severe form of congenital nemaline myopathy caused by disrupting mutations in LMOD3 was identified and denoted as NEM10. Unlike the previously reported patients, who had a severe clinical picture with a substantial risk of early death, our patients showed a relatively mild disease course. As the missense variant c.1648C>T is located further downstream compared to all previously published LMOD3 mutations, it might be associated with higher protein expression compared to the reported loss-of-function mutations. The apparent clusters of 2 mild mutations in Germany and Austria in 4 unrelated families may be explained by a founder effect

    Target selection for T-cell therapy in epithelial ovarian cancer: systematic prioritization of self-antigens

    Get PDF
    Adoptive T cell-receptor therapy (ACT) could represent a promising approach in the targeted treatment of epithelial ovarian cancer (EOC). However, the identification of suitable tumor-associated antigens (TAAs) as targets is challenging. We identified and prioritized TAAs for ACT and other immunotherapeutic interventions in EOC. A comprehensive list of pre-described TAAs was created and candidates were prioritized, using predefined weighted criteria. Highly ranked TAAs were immunohistochemically stained in a tissue microarray of 58 EOC samples to identify associations of TAA expression with grade, stage, response to platinum, and prognosis. Preselection based on expression data resulted in 38 TAAs, which were prioritized. Along with already published Cyclin A1, the TAAs KIF20A, CT45, and LY6K emerged as most promising targets, with high expression in EOC samples and several identified peptides in ligandome analysis. Expression of these TAAs showed prognostic relevance independent of molecular subtypes. By using a systematic vetting algorithm, we identified KIF20A, CT45, and LY6K to be promising candidates for immunotherapy in EOC. Results are supported by IHC and HLA-ligandome data. The described method might be helpful for the prioritization of TAAs in other tumor entities

    Rogdi Defines GABAergic Control of a Wake-promoting Dopaminergic Pathway to Sustain Sleep in Drosophila

    Get PDF
    Kohlschutter-Tonz syndrome (KTS) is a rare genetic disorder with neurological dysfunctions including seizure and intellectual impairment. Mutations at the Rogdi locus have been linked to development of KTS, yet the underlying mechanisms remain elusive. Here we demonstrate that a Drosophila homolog of Rogdi acts as a novel sleep-promoting factor by supporting a specific subset of gamma-aminobutyric acid (GABA) transmission. Rogdi mutant flies displayed insomnia-like behaviors accompanied by sleep fragmentation and delay in sleep initiation. The sleep suppression phenotypes were rescued by sustaining GABAergic transmission primarily via metabotropic GABA receptors or by blocking wake-promoting dopaminergic pathways. Transgenic rescue further mapped GABAergic neurons as a cell-autonomous locus important for Rogdi-dependent sleep, implying metabotropic GABA transmission upstream of the dopaminergic inhibition of sleep. Consistently, an agonist specific to metabotropic but not ionotropic GABA receptors titrated the wake-promoting effects of dopaminergic neuron excitation. Taken together, these data provide the first genetic evidence that implicates Rogdi in sleep regulation via GABAergic control of dopaminergic signaling. Given the strong relevance of GABA to epilepsy, we propose that similar mechanisms might underlie the neural pathogenesis of Rogdi-associated KTS

    PEDIA: prioritization of exome data by image analysis

    Get PDF
    Purpose Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. Methods Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. Results The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20–89% and the top 10 accuracy rate by more than 5–99% for the disease-causing gene. Conclusion Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis

    Kohlschütter-Tönz Syndrome: Mutations in ROGDI and Evidence of Genetic Heterogeneity

    Get PDF
    Kohlschütter–Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by amelogenesis imperfecta, psychomotor delay or regression and seizures starting early in childhood. KTS was established as a distinct clinical entity after the first report by Kohlschütter in 1974, and to date, only a total of 20 pedigrees have been reported. The genetic etiology of KTS remained elusive until recently when mutations in ROGDI were independently identified in three unrelated families and in five likely related Druze families. Herein, we report a clinical and genetic study of 10 KTS families. By using a combination of whole exome sequencing, linkage analysis, and Sanger sequencing, we identify novel homozygous or compound heterozygous ROGDI mutations in five families, all presenting with a typical KTS phenotype. The other families, mostly presenting with additional atypical features, were negative for ROGDI mutations, suggesting genetic heterogeneity of atypical forms of the disease

    Periodontal Ehlers-Danlos Syndrome Is Caused by Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement

    Get PDF
    Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis

    PEDIA: prioritization of exome data by image analysis.

    Get PDF
    PURPOSE: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. METHODS: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. RESULTS: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene. CONCLUSION: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis

    Endocrine and Growth Abnormalities in 4H Leukodystrophy Caused by Variants in POLR3A, POLR3B, and POLR1C.

    Get PDF
    CONTEXT: 4H or POLR3-related leukodystrophy is an autosomal recessive disorder typically characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism, caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C, and POLR3K. The endocrine and growth abnormalities associated with this disorder have not been thoroughly investigated to date. OBJECTIVE: To systematically characterize endocrine abnormalities of patients with 4H leukodystrophy. DESIGN: An international cross-sectional study was performed on 150 patients with genetically confirmed 4H leukodystrophy between 2015 and 2016. Endocrine and growth abnormalities were evaluated, and neurological and other non-neurological features were reviewed. Potential genotype/phenotype associations were also investigated. SETTING: This was a multicenter retrospective study using information collected from 3 predominant centers. PATIENTS: A total of 150 patients with 4H leukodystrophy and pathogenic variants in POLR3A, POLR3B, or POLR1C were included. MAIN OUTCOME MEASURES: Variables used to evaluate endocrine and growth abnormalities included pubertal history, hormone levels (estradiol, testosterone, stimulated LH and FSH, stimulated GH, IGF-I, prolactin, ACTH, cortisol, TSH, and T4), and height and head circumference charts. RESULTS: The most common endocrine abnormalities were delayed puberty (57/74; 77% overall, 64% in males, 89% in females) and short stature (57/93; 61%), when evaluated according to physician assessment. Abnormal thyroid function was reported in 22% (13/59) of patients. CONCLUSIONS: Our results confirm pubertal abnormalities and short stature are the most common endocrine features seen in 4H leukodystrophy. However, we noted that endocrine abnormalities are typically underinvestigated in this patient population. A prospective study is required to formulate evidence-based recommendations for management of the endocrine manifestations of this disorder
    corecore