450 research outputs found
The Social and Political Dimensions of the Ebola Response: Global Inequality, Climate Change, and Infectious Disease
The 2014 Ebola crisis has highlighted public-health vulnerabilities in Liberia, Sierra
Leone, and Guinea – countries ravaged by extreme poverty, deforestation and
mining-related disruption of livelihoods and ecosystems, and bloody civil wars in
the cases of Liberia and Sierra Leone. Ebola’s emergence and impact are grounded
in the legacy of colonialism and its creation of enduring inequalities within African
nations and globally, via neoliberalism and the Washington Consensus. Recent
experiences with new and emerging diseases such as SARS and various strains of
HN influenzas have demonstrated the effectiveness of a coordinated local and
global public health and education-oriented response to contain epidemics. To what
extent is international assistance to fight Ebola strengthening local public health and
medical capacity in a sustainable way, so that other emerging disease threats, which
are accelerating with climate change, may be met successfully? This chapter
considers the wide-ranging socio-political, medical, legal and environmental factors
that have contributed to the rapid spread of Ebola, with particular emphasis on the
politics of the global and public health response and the role of gender, social
inequality, colonialism and racism as they relate to the mobilization and
establishment of the public health infrastructure required to combat Ebola and other
emerging diseases in times of climate change
β-Catenin is a pH sensor with decreased stability at higher intracellular pH.
β-Catenin functions as an adherens junction protein for cell-cell adhesion and as a signaling protein. β-catenin function is dependent on its stability, which is regulated by protein-protein interactions that stabilize β-catenin or target it for proteasome-mediated degradation. In this study, we show that β-catenin stability is regulated by intracellular pH (pHi) dynamics, with decreased stability at higher pHi in both mammalian cells and Drosophila melanogaster β-Catenin degradation requires phosphorylation of N-terminal residues for recognition by the E3 ligase β-TrCP. While β-catenin phosphorylation was pH independent, higher pHi induced increased β-TrCP binding and decreased β-catenin stability. An evolutionarily conserved histidine in β-catenin (found in the β-TrCP DSGIHS destruction motif) is required for pH-dependent binding to β-TrCP. Expressing a cancer-associated H36R-β-catenin mutant in the Drosophila eye was sufficient to induce Wnt signaling and produced pronounced tumors not seen with other oncogenic β-catenin alleles. We identify pHi dynamics as a previously unrecognized regulator of β-catenin stability, functioning in coincidence with phosphorylation
Nutrient stress alters the glycosylation status of LGR5 resulting in reduced protein stability and membrane localisation in colorectal tumour cells: implications for targeting cancer stem cells
BACKGROUND
LGR5 is an important marker of intestinal stem cells and performs its vital functions at the cell membrane. Despite the importance of LGR5 to both normal and cancer stem cell biology, it is not known how microenvironmental stress affects the expression and subcellular distribution of the protein.
METHODS
Nutrient stress was induced through glucose starvation. Glycosylation status was assessed using endoglycosidase or tunicamycin treatment. Flow cytometry and confocal microscopy were used to assess subcellular distribution of LGR5.
RESULTS
Glucose deprivation altered the glycosylation status of LGR5 resulting in reduced protein stability and cell surface expression. Furthermore, inhibiting LGR5 glycosylation resulted in depleted surface expression and reduced localisation in the cis-Golgi network.
CONCLUSIONS
Nutrient stress within a tumour microenvironment has the capacity to alter LGR5 protein stability and membrane localisation through modulation of LGR5 glycosylation status. As LGR5 surface localisation is required for enhanced Wnt signalling, this is the first report to show a mechanism by which the microenvironment could affect LGR5 function
Individual variation in hunger, energy intake and ghrelin responses to acute exercise
Purpose This study aimed to characterize the immediate and extended effect of acute exercise on hunger, energy intake, and circulating acylated ghrelin concentrations using a large data set of homogenous experimental trials and to describe the variation in responses between individuals.
Methods Data from 17 of our group's experimental crossover trials were aggregated yielding a total sample of 192 young, healthy males. In these studies, single bouts of moderate to high-intensity aerobic exercise (69% ± 5% V˙O2 peak; mean ± SD) were completed with detailed participant assessments occurring during and for several hours postexercise. Mean hunger ratings were determined during (n = 178) and after (n = 118) exercise from visual analog scales completed at 30-min intervals, whereas ad libitum energy intake was measured within the first hour after exercise (n = 60) and at multiple meals (n = 128) during the remainder of trials. Venous concentrations of acylated ghrelin were determined at strategic time points during (n = 118) and after (n = 89) exercise.
Results At group level, exercise transiently suppressed hunger (P < 0.010, Cohen's d = 0.77) but did not affect energy intake. Acylated ghrelin was suppressed during exercise (P < 0.001, Cohen's d = 0.10) and remained significantly lower than control (no exercise) afterward (P < 0.024, Cohen's d = 0.61). Between participants, there were notable differences in responses; however, a large proportion of this spread lay within the boundaries of normal variation associated with biological and technical assessment error.
Conclusion In young men, acute exercise suppresses hunger and circulating acylated ghrelin concentrations with notable diversity between individuals. Care must be taken to distinguish true interindividual variation from random differences within normal limits
Using latent class analysis to develop a model of the relationship between socioeconomic position and ethnicity: cross-sectional analyses from a multi-ethnic birth cohort study
Background: Almost all studies in health research control or investigate socioeconomic position (SEP) as exposure or confounder. Different measures of SEP capture different aspects of the underlying construct, so efficient methodologies to combine them are needed. SEP and ethnicity are strongly associated, however not all measures of SEP may be appropriate for all ethnic groups. Methods: We used latent class analysis (LCA) to define subgroups of women with similar SEP profiles using 19 measures of SEP. Data from 11,326 women were used, from eight different ethnic groups but with the majority from White British (40%) or Pakistani (45%) backgrounds, who were recruited during pregnancy to the Born in Bradford birth cohort study. Results: Five distinct SEP subclasses were identified in the LCA: (i) "Least socioeconomically deprived and most educated" (20%); (ii) "Employed and not materially deprived" (19%); (iii) "Employed and no access to money" (16%); (iv) "Benefits and not materially deprived" (29%) and (v) "Most economically deprived" (16%). Based on the magnitude of the point estimates, the strongest associations were that compared to White British women, Pakistani and Bangladeshi women were more likely to belong to groups: (iv) "benefits and not materially deprived" (relative risk ratio (95% CI): 5.24 (4.44, 6.19) and 3.44 (2.37, 5.00), respectively) or (v) most deprived group (2.36 (1.96, 2.84) and 3.35 (2.21, 5.06) respectively) compared to the least deprived class. White Other women were more than twice as likely to be in the (iv) "benefits and not materially deprived group" compared to White British women and all ethnic groups, other than the Mixed group, were less likely to be in the (iii) "employed and not materially deprived" group than White British women. Conclusions: LCA allows different aspects of an individual’s SEP to be considered in one multidimensional indicator, which can then be integrated in epidemiological analyses. Ethnicity is strongly associated with these identified subgroups. Findings from this study suggest a careful use of SEP measures in health research, especially when looking at different ethnic groups. Further replication of these findings is needed in other populations
A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B
Upon induction of autophagy, the ubiquitin-like protein LC3 is conjugated to phosphatidylethanolamine (PE) on the inner and outer membrane of autophagosomes to allow cargo selection and autophagosome formation. LC3 undergoes two processing steps, the proteolytic cleavage of pro-LC3 and the de-lipidation of LC3-PE from autophagosomes, both executed by the same cysteine protease ATG4. How ATG4 activity is regulated to co-ordinate these events is currently unknown. Here we find that ULK1, a protein kinase activated at the autophagosome formation site, phosphorylates human ATG4B on serine 316. Phosphorylation at this residue results in inhibition of its catalytic activity in vitro and in vivo. On the other hand, phosphatase PP2A-PP2R3B can remove this inhibitory phosphorylation. We propose that the opposing activities of ULK1-mediated phosphorylation and PP2A-mediated dephosphorylation provide a phospho-switch that regulates the cellular activity of ATG4B to control LC3 processing
Variation and ethnic inequalities in treatment of common mental disorders before, during and after pregnancy : combined analysis of routine and research data in the Born in Bradford cohort
BACKGROUND: Common mental disorders (CMD) such as anxiety and depression during the maternal period can cause significant morbidity to the mother in addition to disrupting biological, attachment and parenting processes that affect child development. Pharmacological treatment is a first-line option for moderate to severe episodes. Many women prescribed pharmacological treatments cease them during pregnancy but it is unclear to what extent non-pharmacological options are offered as replacement. There are also concerns that treatments offered may not be proportionate to need in minority ethnic groups, but few data exist on treatment disparities in the maternal period. We examined these questions in a multi-ethnic cohort of women with CMD living in Bradford, England before, during and up to one year after pregnancy. METHODS: We searched the primary care records of women enrolled in the Born in Bradford cohort for diagnoses, symptoms, signs ('identification'), referrals for treatment, non-pharmacological and pharmacological treatment and monitoring ('treatment') related to CMD. Records were linked with maternity data to classify women identified with a CMD as treated prior to, and one year after, delivery. We examined rates and types of treatment during pregnancy, and analysed potential ethnic group differences using adjusted Poisson and multinomial logistic regression models. RESULTS: We analysed data on 2,234 women with indicators of CMD. Most women were discontinued from pharmacological treatment early in pregnancy, but this was accompanied by recorded access to non-drug treatments in only 15 % at the time of delivery. Fewer minority ethnic women accessed treatments compared to White British women despite minority ethnic women being 55-70 % more likely than White British women to have been identified with anxiety in their medical record. CONCLUSIONS: Very few women who discontinued pharmacological treatment early in their pregnancy were offered other non-pharmacological treatments as replacement, and most appeared to complete their pregnancy untreated. Further investigation is warranted to replicate the finding that minority ethnic women are more likely to be identified as being anxious or having anxiety and understand what causes the variation in access to treatments
Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy
Autophagy is a cell-protective and degradative process that recycles damaged and long-lived cellular components. Cancer cells are thought to take advantage of autophagy to help them to cope with the stress of tumorigenesis; thus targeting autophagy is an attractive therapeutic approach. However, there are currently no specific inhibitors of autophagy. ULK1, a serine/threonine protein kinase, is essential for the initial stages of autophagy, and here we report that two compounds, MRT67307 and MRT68921, potently inhibit ULK1 and ULK2 in vitro and block autophagy in cells. Using a drug-resistant ULK1 mutant, we show that the autophagy-inhibiting capacity of the compounds is specifically through ULK1. ULK1 inhibition results in accumulation of stalled early autophagosomal structures, indicating a role for ULK1 in the maturation of autophagosomes as well as initiation
- …
