31 research outputs found
Nuclear Apaf-1 and cytochrome c redistribution following stress-induced apoptosis
AbstractApoptotic protease activating factor-1 (Apaf-1) and cytochrome c are cofactors critical for inducing caspase-9 activation following stress-induced apoptosis. One consequence of caspase-9 activation is nuclear–cytoplasmic barrier disassembly, which is required for nuclear caspase-3 translocation. In the nucleus, caspase-3 triggers proteolysis of the caspase-activated DNA nuclease (CAD) inhibitor, causing CAD induction and subsequent DNA degradation. Here we demonstrate that apoptotic cells show perinuclear cytochrome c aggregation, which may be critical for nuclear redistribution of cytochrome c and Apaf-1. We thus indicate that the nuclear redistribution of these cofactors concurs with the previously reported caspase-9-induced nuclear disassembly, and may represent an early apoptotic hallmark
Laminar Craya-Curtet jets
This Brief Communication investigates laminar Craya-Curtet flows, formed when a jet with moderately large Reynolds number discharges into a coaxial ducted flow of much larger radius. It is seen that the Craya-Curtet number, C=(J/sub c//J/sub j/)/sup 1/2/, defined as the square root of the ratio of the momentum flux of the coflowing stream to that of the central jet, arises as the single governing parameter when the boundary-layer approximation is used to describe the resulting steady slender jet. The numerical integrations show that for C above a critical value C/sub c/ the resulting streamlines remain aligned with the axis, while for C<C/sub c/ the entrainment demands of the jet cannot be satisfied by the coflow, and a toroidal recirculation region forms. The critical Craya-Curtet number is determined for both uniform and parabolic coflow, yielding C/sub c/=0.65 and C/sub c/=0.77, respectively. The streamlines determined numerically are compared with those obtained experimentally by flow visualizations, yielding good agreement in the resulting flow structure and also in the value of C/sub c
CCDC 1916748, 1916750, 1916755 & 1916756: Experimental Crystal Structure Determination
Related Article: Alasdair I. McKay, Alexander J. Bukvic, Bengt E. Tegner, Arron L. Burnage, Antonio J. Martı́nez-Martı́nez, Nicholas H. Rees, Stuart A. Macgregor, Andrew S. Weller|2019|J.Am.Chem.Soc.|141|11700|doi:10.1021/jacs.9b0557
Recommended from our members
Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP
In most conditions, glucose is the best carbon source for E. coli: it provides faster growth than other sugars, and is consumed first in sugar mixtures. Here we identify conditions in which E. coli strains grow slower on glucose than on other sugars, namely when a single amino acid (arginine, glutamate, or proline) is the sole nitrogen source. In sugar mixtures with these nitrogen sources, E. coli still consumes glucose first, but grows faster rather than slower after exhausting glucose, generating a reversed diauxic shift. We trace this counterintuitive behavior to a metabolic imbalance: levels of TCA-cycle metabolites including α-ketoglutarate are high, and levels of the key regulatory molecule cAMP are low. Growth rates were increased by experimentally increasing cAMP levels, either by adding external cAMP, by genetically perturbing the cAMP circuit or by inhibition of glucose uptake. Thus, the cAMP control circuitry seems to have a ‘bug’ that leads to slow growth under what may be an environmentally rare condition