43 research outputs found

    Milk production in Uganda: Dairy farming economics and development policy impacts

    Get PDF

    Interventions to reduce pedestrian road traffic injuries: A systematic review of randomized controlled trials, cluster randomized controlled trials, interrupted time-series, and controlled before-after studies

    Get PDF
    BACKGROUND: Road traffic injuries are among the top ten causes of death globally, with the highest burden in low and middle-income countries, where over a third of deaths occur among pedestrians and cyclists. Several interventions to mitigate the burden among pedestrians have been widely implemented, however, the effectiveness has not been systematically examined. OBJECTIVES: To assess the effectiveness of interventions to reduce road traffic crashes, injuries, hospitalizations and deaths among pedestrians. METHODS: We considered studies that evaluated interventions to reduce road traffic crashes, injuries, hospitalizations and/or deaths among pedestrians. We considered randomized controlled trials, interrupted time-series studies, and controlled before-after studies. We searched MEDLINE, EMBASE, Web of Science, WHO Global Health Index, Health Evidence, Transport Research International Documentation and ClinicalTrials.gov through 31 August 2020, and the reference lists of all included studies. Two reviewers independently screened titles and abstracts and full texts, extracted data and assessed the risk of bias. We summarized findings narratively with text and tables. RESULTS: A total of 69123 unique records were identified through the searches, with 26 of these meeting our eligibility criteria. All except two of these were conducted in high-income countries and most were from urban settings. The majority of studies observed either a clear effect favoring the intervention or an unclear effect potentially favoring the intervention and these included: changes to the road environment (19/27); changes to legislation and enforcement (12/12); and road user behavior/education combined with either changes to the road environment (3/3) or with legislation and enforcement (1/1). A small number of studies observed either a null effect or an effect favoring the control. CONCLUSIONS: Although the highest burden of road traffic injuries exists in LMICs, very few studies have examined the effectiveness of available interventions in these settings. Studies indicate that road environment, legislation and enforcement interventions alone produce positive effects on pedestrian safety. In combination with or with road user behavior/education interventions they are particularly effective in improving pedestrian safety

    Nucleoside reverse-transcriptase inhibitor cross-resistance and outcomes from second-line antiretroviral therapy in the public health approach: an observational analysis within the randomised, open-label, EARNEST trial.

    Get PDF
    BACKGROUND: Cross-resistance after first-line antiretroviral therapy (ART) failure is expected to impair activity of nucleoside reverse-transcriptase inhibitors (NRTIs) in second-line therapy for patients with HIV, but evidence for the effect of cross-resistance on virological outcomes is limited. We aimed to assess the association between the activity, predicted by resistance testing, of the NRTIs used in second-line therapy and treatment outcomes for patients infected with HIV. METHODS: We did an observational analysis of additional data from a published open-label, randomised trial of second-line ART (EARNEST) in sub-Saharan Africa. 1277 adults or adolescents infected with HIV in whom first-line ART had failed (assessed by WHO criteria with virological confirmation) were randomly assigned to a boosted protease inhibitor (standardised to ritonavir-boosted lopinavir) with two to three NRTIs (clinician-selected, without resistance testing); or with raltegravir; or alone as protease inhibitor monotherapy (discontinued after week 96). We tested genotypic resistance on stored baseline samples in patients in the protease inhibitor and NRTI group and calculated the predicted activity of prescribed second-line NRTIs. We measured viral load in stored samples for all patients obtained every 12-16 weeks. This trial is registered with Controlled-Trials.com (number ISRCTN 37737787) and ClinicalTrials.gov (number NCT00988039). FINDINGS: Baseline genotypes were available in 391 (92%) of 426 patients in the protease inhibitor and NRTI group. 176 (89%) of 198 patients prescribed a protease inhibitor with no predicted-active NRTIs had viral suppression (viral load <400 copies per mL) at week 144, compared with 312 (81%) of 383 patients in the protease inhibitor and raltegravir group at week 144 (p=0·02) and 233 (61%) of 280 patients in the protease inhibitor monotherapy group at week 96 (p<0·0001). Compared with results with no active NRTIs, 95 (85%) of 112 patients with one predicted-active NRTI had viral suppression (p=0·3) and 20 (77%) of 26 patients with two or three active NRTIs had viral suppression (p=0·08). Over all follow-up, greater predicted NRTI activity was associated with worse viral load suppression (global p=0·0004). INTERPRETATION: Genotypic resistance testing might not accurately predict NRTI activity in protease inhibitor-based second-line ART. Our results do not support the introduction of routine resistance testing in ART programmes in low-income settings for the purpose of selecting second-line NRTIs. FUNDING: European and Developing Countries Clinical Trials Partnership, UK Medical Research Council, Institito de Salud Carlos III, Irish Aid, Swedish International Development Cooperation Agency, Instituto Superiore di Sanita, WHO, Merck

    Assessment of second-line antiretroviral regimens for HIV therapy in Africa.

    Get PDF
    BACKGROUND: The efficacy and toxic effects of nucleoside reverse-transcriptase inhibitors (NRTIs) are uncertain when these agents are used with a protease inhibitor in second-line therapy for human immunodeficiency virus (HIV) infection in resource-limited settings. Removing the NRTIs or replacing them with raltegravir may provide a benefit. METHODS: In this open-label trial in sub-Saharan Africa, we randomly assigned 1277 adults and adolescents with HIV infection and first-line treatment failure to receive a ritonavir-boosted protease inhibitor (lopinavir-ritonavir) plus clinician-selected NRTIs (NRTI group, 426 patients), a protease inhibitor plus raltegravir in a superiority comparison (raltegravir group, 433 patients), or protease-inhibitor monotherapy after 12 weeks of induction therapy with raltegravir in a noninferiority comparison (monotherapy group, 418 patients). The primary composite end point, good HIV disease control, was defined as survival with no new World Health Organization stage 4 events, a CD4+ count of more than 250 cells per cubic millimeter, and a viral load of less than 10,000 copies per milliliter or 10,000 copies or more with no protease resistance mutations at week 96 and was analyzed with the use of imputation of data (≤4%). RESULTS: Good HIV disease control was achieved in 60% of the patients (mean, 255 patients) in the NRTI group, 64% of the patients (mean, 277) in the raltegravir group (P=0.21 for the comparison with the NRTI group; superiority of raltegravir not shown), and 55% of the patients (mean, 232) in the monotherapy group (noninferiority of monotherapy not shown, based on a 10-percentage-point margin). There was no significant difference in rates of grade 3 or 4 adverse events among the three groups (P=0.82). The viral load was less than 400 copies per milliliter in 86% of patients in the NRTI group, 86% in the raltegravir group (P=0.97), and 61% in the monotherapy group (P<0.001). CONCLUSIONS: When given with a protease inhibitor in second-line therapy, NRTIs retained substantial virologic activity without evidence of increased toxicity, and there was no advantage to replacing them with raltegravir. Virologic control was inferior with protease-inhibitor monotherapy. (Funded by European and Developing Countries Clinical Trials Partnership and others; EARNEST Current Controlled Trials number, ISRCTN37737787, and ClinicalTrials.gov number, NCT00988039.)

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa

    Get PDF
    [Figure: see text]

    The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance

    Get PDF
    Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore