704 research outputs found

    How to distinguish between interacting and noninteracting molecules in tunnel junctions

    Full text link
    Recent experiments demonstrate a temperature control of the electric conduction through a ferrocene-based molecular junction. Here we examine the results in view of determining means to distinguish between transport through single-particle molecular levels or via transport channels split by Coulomb repulsion. Both transport mechanisms are similar in molecular junctions given the similarities between molecular intralevel energies and the charging energy. We propose an experimentally testable way to identify the main transport process. By applying a magnetic field to the molecule, we observe that an interacting theory predicts a shift of the conductance resonances of the molecule whereas in the noninteracting case each resonance is split into two peaks. The interaction model works well in explaining our experimental results obtained in a ferrocene-based single-molecule junction, where the charge degeneracy peaks shift (but do not split) under the action of an applied 7-Tesla magnetic field. This method is useful for a proper characterization of the transport properties of molecular tunnel junctions.Comment: Main text: 7 pages, 5 figures; SI: 2 pages, 2 figures. Accepted to RSC Nanoscal

    Preventing the spread of coenurosis – a disease of sheep and goats

    Get PDF

    Adjudication of new community pharmacies: comparison of ranking criteria

    Get PDF
    This article studies the differences between the models of candidate classification for the adjudication of new pharmacies in the different Spanish self-governing regions. The objective of this study is to analyze the profile of the selected professional. Generally, the ranking takes into account the professional activity as pharmacist, the pre-graduate formation as well as the postgraduate, with different weights. Some of the 15 autonomies include as merits the cooficial languages, an optional written test and special situations as unemployment. In general, the criteria try to find out the best profile of pharmacist based on the professional experience and the postgraduate formation

    Electrostatic Control over Temperature-Dependent Tunneling across a Single Molecule Junction

    Full text link
    Understanding how the mechanism of charge transport through molecular tunnel junctions depends on temperature is crucial to control electronic function in molecular electronic devices. With just a few systems investigated as a function of bias and temperature so far, thermal effects in molecular tunnel junctions remain poorly understood. Here we report a detailed charge transport study of an individual redox-active ferrocene-based molecule over a wide range of temperatures and applied potentials. The results show the temperature dependence of the current to vary strongly as a function of the gate voltage. Specifically, the current across the molecule exponentially increases in the Coulomb blockade regime and decreases at the charge degeneracy points, while remaining temperature-independent at resonance. Our observations can be well accounted for by a formal single-level tunneling model where the temperature dependence relies on the thermal broadening of the Fermi distributions of the electrons in the leads.Comment: 37 pages, 13 figure

    Irreversible and reversible modes of operation of deterministic ratchets

    Full text link
    We discuss a problem of optimization of the energetic efficiency of a simple rocked ratchet. We concentrate on a low-temperature case in which the particle's motion in a ratchet potential is deterministic. We show that the energetic efficiency of a ratchet working adiabatically is bounded from above by a value depending on the form of ratchet potential. The ratchets with strongly asymmetric potentials can achieve ideal efficiency of unity without approaching reversibility. On the other hand we show that for any form of the ratchet potential a set of time-protocols of the outer force exist under which the operation is reversible and the ideal value of efficiency is also achieved. The mode of operation of the ratchet is still quasistatic but not adiabatic. The high values of efficiency can be preserved even under elevated temperatures

    Prediction of alkaline earth elements in bone remains by near infrared spectroscopy

    Get PDF
    An innovative methodological approach has been developed for the prediction of the mineral element composition of bone remains. It is based on the use of Fourier Transform Near Infrared (FT-NIR) diffuse reflectance measurements. The method permits a fast, cheap and green analytical way, to understand postmortem degradation of bones caused by the environment conditions on different skeletal parts and to select the best preserved bone samples. Samples, from the Late Roman Necropolis of Virgen de la Misericordia street and En Gil street located in Valencia (Spain), were employed to test the proposed approach being determined calcium, magnesium and strontium in bone remains and sediments. Coefficients of determination obtained between predicted values and reference ones for Ca, Mg and Sr were 90.4, 97.3 and 97.4, with residual predictive deviation of 3.2, 5.3 and 2.3, respectively, and relative root mean square error of prediction between 10% and 37%. Results obtained evidenced that NIR spectra combined with statistical analysis can help to predict bone mineral profiles suitable to evaluate bone diagenesis

    Repression of Germline Genes in \u3cem\u3eCaenorhabditis elegans\u3c/em\u3e Somatic Tissues by H3K9 Dimethylation of Their Promoters

    Get PDF
    Repression of germline-promoting genes in somatic cells is critical for somatic development and function. To study how germline genes are repressed in somatic tissues, we analyzed key histone modifications in three Caenorhabditis elegans synMuv B mutants, lin-15B, lin-35, and lin-37—all of which display ectopic expression of germline genes in the soma. LIN-35 and LIN-37 are members of the conserved DREAM complex. LIN-15B has been proposed to work with the DREAM complex but has not been shown biochemically to be a member of the complex. We found that, in wild-type worms, synMuv B target genes and germline genes are enriched for the repressive histone modification dimethylation of histone H3 on lysine 9 (H3K9me2) at their promoters. Genes with H3K9me2 promoter localization are evenly distributed across the autosomes, not biased toward autosomal arms, as are the broad H3K9me2 domains. Both synMuv B targets and germline genes display a dramatic reduction of H3K9me2 promoter localization in lin-15B mutants, but much weaker reduction in lin-35 and lin-37mutants. This difference between lin-15B and DREAM complex mutants likely represents a difference in molecular function for these synMuv B proteins. In support of the pivotal role of H3K9me2 in regulation of germline genes by LIN-15B, global loss of H3K9me2 but not H3K9me3 results in phenotypes similar to synMuv B mutants, high-temperature larval arrest, and ectopic expression of germline genes in the soma. We propose that LIN-15B-driven enrichment of H3K9me2 at promoters of germline genes contributes to repression of those genes in somatic tissues

    Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust

    Get PDF
    Le comportement du signal radar TerraSAR-X en fonction des paramètres du sol (rugosité, humidité, structure) a été analysé sur des données 2009 et 2010. Les résultats montrent que la sensibilité du signal radar à l'humidité est plus importante pour des faibles incidences (25° en comparaison à 50°). Pour des fortes valeurs d'humidité, le signal TerraSAR-X est plus sensible à la rugosité du sol à forte incidence (50°). La forte résolution spatiale des données TerraSAR-X (1 m) permet de détecter la croûte de battance à l'échelle intra parcellaire. / Soils play a key role in shaping the environment and in risk assessment. We characterized the soils of bare agricultural plots using TerraSAR-X (9.5 GHz) data acquired in 2009 and 2010. We analyzed the behavior of the TerraSAR-X signal for two configurations, HH-25° and HH-50°, with regard to several soil conditions: moisture content, surface roughness, soil composition and soil-surface structure (slaking crust).The TerraSAR-X signal was more sensitive to soil moisture at a low (25°) incidence angle than at a high incidence angle (50°). For high soil moisture (N25%), the TerraSAR-X signal was more sensitive to soil roughness at a high incidence angle (50°) than at a low incidence angle (25°). The high spatial resolution of the TerraSAR-X data (1 m) enabled the soil composition and slaking crust to be analyzed at the within-plot scale based on the radar signal. The two loamy-soil categories that composed our training plots did not differ sufficiently in their percentages of sand and clay to be discriminated by the X-band radar signal.However, the spatial distribution of slaking crust could be detected when soil moisture variation is observed between soil crusted and soil without crust. Indeed, areas covered by slaking crust could have greater soil moisture and consequently a greater backscattering signal than soils without crust

    The DREAM complex promotes gene body H2A.Z for target repression.

    Get PDF
    The DREAM (DP, Retinoblastoma [Rb]-like, E2F, and MuvB) complex controls cellular quiescence by repressing cell cycle genes, but its mechanism of action is poorly understood. Here we show that Caenorhabditis elegans DREAM targets have an unusual pattern of high gene body HTZ-1/H2A.Z. In mutants of lin-35, the sole p130/Rb-like gene in C. elegans, DREAM targets have reduced gene body HTZ-1/H2A.Z and increased expression. Consistent with a repressive role for gene body H2A.Z, many DREAM targets are up-regulated in htz-1/H2A.Z mutants. Our results indicate that the DREAM complex facilitates high gene body HTZ-1/H2A.Z, which plays a role in target gene repression.We are grateful to D. Fay for providing the 5× outcrossed lin-35 strain, and Robert Horvitz for antibodies. I.L., M.A.C., P.S., A.A., and J.A. were supported by Wellcome Trust Senior Research Fellowships to J.A. (054523 and 101863). J.A. also acknowledges support by core funding from the Wellcome Trust and Cancer Research UK. J.M.G. and S.S. were supported by National Institutes of Health (NIH) R01 grant GM34059. Part of this work was supported by NIH National Human Genome Research Institute (NHGRI) grant U01 HG004270 to the modENCODE consortium headed by J.D. Lieb.This is the final version of the article. It first appeared from CSH Press via http://dx.doi.org/10.1101/gad.255810.11

    Relationship between aerodynamic roughness length and bulk sedge leaf area index in a mixed-species boreal mire complex

    Get PDF
    Leaf area index (LAI) is an important parameter in natural ecosystems, representing the seasonal development of vegetation and photosynthetic potential. However, direct measurement techniques require labor-intensive field campaigns that are usually limited in time, while remote sensing approaches often do not yield reliable estimates. Here we propose that the bulk LAI of sedges (LAI(s)) can be estimated alternatively from a micrometeorological parameter, the aerodynamic roughness length for momentum (z(0)). z(0) can be readily calculated from high-response turbulence and other meteorological data, typically measured continuously and routinely available at ecosystem research sites. The regressions of LAI versus z(0) were obtained using the data from two Finnish natural sites representative of boreal fen and bog ecosystems. LAI(s) was found to be well correlated with z(0) and sedge canopy height. Superior method performance was demonstrated in the fen ecosystem where the sedges make a bigger contribution to overall surface roughness than in bogs.Peer reviewe
    corecore