103 research outputs found

    Soluble iron inputs to the Southern Ocean through recent andesitic to rhyolitic volcanic ash eruptions from the Patagonian Andes

    Get PDF
    Patagonia, due to its geographic position and the dominance of westerly winds, is a key area that contributes to the supply of nutrients to the Southern Ocean, both through mineral dust and through the periodic deposits of volcanic ash. Here we evaluate the characteristics of Fe dissolved (into soluble and colloidal species) from volcanic ash for three recent southern Andes volcanic eruptions having contrasting features and chemical compositions. Contact between cloud waters (wet deposition) and end-members of andesitic (Hudson volcano) and rhyolitic (Chaitén volcano) materials was simulated. Results indicate higher Fe release and faster liberation rates in the andesitic material. Fe release during particle-seawater interaction (dry deposition) has higher rates in rhyolitic-type ashes. Rhyolitic ashes under acidic conditions release Fe in higher amounts and at a slower rate, while in those samples containing mostly glass shards, Fe release was lower and faster. The 2011 Puyehue eruption was observed by a dust monitoring station. Puyehue-type eruptions can contribute soluble Fe to the ocean via dry or wet deposition, nearly reaching the limit required for phytoplankton growth. In contrast, the input of Fe after processing by an acidic eruption plume could raise the amount of dissolved Fe in surface ocean waters several times, above the threshold required to initiate phytoplankton blooms. A single eruption like the Puyehue one represents more than half of the yearly Fe flux contributed by dust.Instituto de Física La Plat

    A Multicenter Retrospective Survey regarding Diabetic Ketoacidosis Management in Italian Children with Type 1 Diabetes

    Get PDF
    We conducted a retrospective survey in pediatric centers belonging to the Italian Society for Pediatric Diabetology and Endocrinology. The following data were collected for all new-onset diabetes patients aged 0-18 years: DKA (pH < 7.30), severe DKA (pH < 7.1), DKA in preschool children, DKA treatment according to ISPAD protocol, type of rehydrating solution used, bicarbonates use, and amount of insulin infused. Records (n = 2453) of children with newly diagnosed diabetes were collected from 68/77 centers (87%), 39 of which are tertiary referral centers, the majority of whom (n = 1536, 89.4%) were diagnosed in the tertiary referral centers. DKA was observed in 38.5% and severe DKA in 10.3%. Considering preschool children, DKA was observed in 72%, and severe DKA in 16.7%. Cerebral edema following DKA treatment was observed in 5 (0.5%). DKA treatment according to ISPAD guidelines was adopted in 68% of the centers. In the first 2 hours, rehydration was started with normal saline in all centers, but with different amount. Bicarbonate was quite never been used. Insulin was infused starting from third hour at the rate of 0.05-0.1 U/kg/h in 72% of centers. Despite prevention campaign, DKA is still observed in Italian children at onset, with significant variability in DKA treatment, underlying the need to share guidelines among centers

    High-latitude dust in the Earth system

    Get PDF
    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (&ge;50&deg;N and &ge;40&deg;S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover &gt;500,000 km2&nbsp;and contribute at least 80&ndash;100 Tg yr&minus;1&nbsp;of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios

    Carbon sequestration in the deep Atlantic enhanced by Saharan dust

    Get PDF
    Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing sinking rates of particulate organic matter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000 m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles

    Has COVID-19 Delayed the Diagnosis and Worsened the Presentation of Type 1 Diabetes in Children?

    Get PDF
    Objective: To evaluate whether the diagnosis of pediatric type 1 diabetes or its acute complications changed during the early phase of the coronavirus disease 2019 (COVID-19) pandemic in Italy. Research design and methods: This was a cross-sectional, Web-based survey of all Italian pediatric diabetes centers to collect diabetes, diabetic ketoacidosis (DKA), and COVID-19 data in patients presenting with new-onset or established type 1 diabetes between 20 February and 14 April in 2019 and 2020. Results: Fifty-three of 68 centers (77.9%) responded. There was a 23% reduction in new diabetes cases in 2020 compared with 2019. Among those newly diagnosed patient who presented in a state of DKA, the proportion with severe DKA was 44.3% in 2020 vs. 36.1% in 2019 (P = 0.03). There were no differences in acute complications. Eight patients with asymptomatic or mild COVID-19 had laboratory-confirmed severe acute respiratory syndrome coronavirus 2. Conclusions: The COVID-19 pandemic might have altered diabetes presentation and DKA severity. Preparing for any "second wave" requires strategies to educate and reassure parents about timely emergency department attendance for non-COVID-19 symptoms

    Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition

    Get PDF
    Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops

    A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems

    Full text link
    corecore