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Abstract
Bacteria-inducing legume nodules are known as rhizobia and belong to the class 
Alphaproteobacteria and Betaproteobacteria. They promote the growth and 
nutrition of their respective legume hosts through atmospheric nitrogen fixation 
which takes place in the nodules induced in their roots or stems. In addition, 
rhizobia have other plant growth-promoting mechanisms, mainly solubilization 
of phosphate and production of indoleacetic acid, ACC deaminase and sidero-
phores. Some of these mechanisms have been reported for strains of rhizobia 
which are also able to promote the growth of several nonlegumes, such as cere-
als, oilseeds and vegetables. Less studied are the mechanisms that have the rhi-
zobia to promote the plant health; however, these bacteria are able to exert 
biocontrol of some phytopathogens and to induce the plant resistance. In this 
chapter, we revised the available data about the ability of the legume nodule-
inducing bacteria for improving the plant growth, health and nutrition of both 
legumes and nonlegumes. These data showed that rhizobia meet all the require-
ments of sustainable agriculture to be used as bio-inoculants allowing the total or 
partial replacement of chemicals used for fertilization or protection of crops.
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4.1	 �Introduction

Currently, two of the main challenges of global agriculture are the achievement of a 
sustainable crop production and the protection of natural environments. The increase 
of the world population requires an increase in food production but using agronomic 
practices that preserve the environment. In order to achieve these aims, the Food and 
Agriculture Organization of the United Nations (FAO) has proposed to declare the 
year 2020 as the International Year of Plant Health (IYPH 2020). Obtaining health-
ier plants implies the protection of the world plant resources from pests (https://
www.ippc.int/en/iyph/). According to FAO expectations, healthier plants allow us to 
obtain higher crop yields avoiding diversity losses, to reduce the hunger and poverty 
and to achieve a safer trade, a higher economic development and a sustainable 
health. All of these aims are included in the goals of the Agenda 2030 for Sustainable 
Development, launched by the United Nations in September of the year 2015 
(https://www.un.org/sustainabledevelopment/sustainable-development-goals/).

The increase in crop production that is necessary for the eradication of hunger 
and malnutrition in the world requires agronomic practices that are not just limited 
to the control of pests. The fertilization of crops, to date mainly based on the appli-
cation of chemical fertilizers, is also essential to increase their productivity and get 
an adequate amount of food for the ever-growing world's population. Moreover, 
consumers currently also increasingly demand healthy and safe foods, which go 
beyond the obtaining of healthier plants themselves. It is hard to combine agro-
nomic sustainable practices with the obtaining of safer and healthier plants because 
the current agronomic practices need to be changed. These changes involve the total 
or partial replacement of chemical fertilizers and pesticides by biofertilizers and 
biopesticides in order to protect the health of all living beings and also to preserve 
the environment.

Biofertilizers and biopesticides are mainly constituted by microorganisms which 
exert a positive effect on the growth, nutrition and health of the plants (Berg 2009; 
Berendsen et al. 2012; Abhilash et al. 2016; Vejan et al. 2016; Berg et al. 2017), and 
they are key factors for plant growth and protection (Berg et al. 2017). The plant 
microbiome, either rhizospheric or endospheric, is a determinant of the plant health, 
growth and nutrition (Berendsen et al. 2012; Gaiero et al. 2013; Santoyo et al. 2016; 
Berg et al. 2017). However, many species of bacteria present in the plant microbi-
ome are opportunistic human pathogens (Mendes et al. 2013) and, despite some of 
them are plant growth promoters, they cannot be used as biofertilizers or biopesti-
cides (Menéndez et al. 2016).

Within the plant beneficial bacteria that are also safe for human health, we can 
highlight the rhizobia, a diverse group of bacteria able to induce nodules in roots or 
stems of legumes where they carry out the nitrogen fixation (Velázquez et al. 2017b). 
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After their use as inoculants for more than one century, the rhizobia have proven to 
be non-pathogenic for humans, animals and plants. Moreover, they are able to 
improve plant growth and nutrition and to produce compounds, such as sidero-
phores, involved in the biological control of plant pathogens (Gopalakrishnan et al., 
2015; Vargas et al. 2017; Velázquez et al. 2017a).

In the present chapter, we revise the current knowledge about the plant growth 
mechanisms presented by strains belonging to different genera of rhizobia, as well 
as the effects of their inoculation on different plants from the point of view of their 
health, growth and nutrition.

4.2	 �Diversity of Bacteria-Inducing Legume Nodules

The existence of nodules in the roots of legumes was first reported in the seven-
teenth century by Malpighi, but it was at the end of the nineteenth century when 
Beijerinck (1888) isolated for the first time a bacterium from nodules of Vicia, 
which was initially named Bacillus radicicola. Later, this bacterium was renamed 
as Rhizobium leguminosarum (Frank 1889) and, until now, the bacteria nodulating 
legumes are generically called rhizobia. The rhizobia currently form a complex 
group of bacteria which belong to different phyla, classes, orders, families, and 
genera (Fig. 4.1) and are able to establish nitrogen-fixing symbioses with different 
legumes around the world.

The species nodulating legumes described before the year 2017 were recorded 
by Velázquez et al. (2017b) and those described from this year to date are listed in 
Table 4.1.

Most of rhizobia reported to date belong to the class Alphaproteobacteria within 
the phylum Proteobacteria and nodulate legumes from the subfamily Papilionoideae. 
They are distributed in several families of the order Rhizobiales (Velázquez et al. 
2017b), and most of them belong to the genus Rhizobium, included in the family 
Rhizobiaceae (Conn, 1938) together with the old genera Allorhizobium (de Lajudie 
et al. 1998) and Ensifer (previously named Sinorhizobium) (Judicial Commission of 
the International Committee on Systematic of Prokaryotes, 2008) and the new gen-
era Neorhizobium (Mousavi et al. 2014) and Pararhizobium (Mousavi et al. 2015).

All these mentioned genera contain species which present rapid growth on media 
containing mannitol as carbon source, whereas the genera Bradyrhizobium (Jordan, 
1982) and Azorhizobium (Dreyfus et al. 1988) contain slow-growing species. They 
were included into the families Bradyrhizobiaceae (Garrity et al. 2005), whose cor-
rect name is Nitrobacteraceae (Validation list 107, 2016), and Hyphomicrobiaceae 
(Babudieri 1950; Skerman et al. 1980), respectively. Following the criteria of the 
growth rate in yeast mannitol agar (Vincent 1970), a new genus named 
Mesorhizobium, with an intermediate growth rate between the genera Rhizobium 
and Bradyrhizobium, was split from genus Rhizobium by Jarvis et al. (1997). The 
genus Mesorhizobium belongs to the family Phyllobacteriaceae (Mergaert and 
Swings 2005; Validation list No.107 2006).
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Also, several species of non-classic rhizobial genera belonging to the 
Alphaproteobacteria have been reported as legume-nodulating bacteria (Velázquez 
et al. 2017b). Some of these genera belong to families that also contain classic rhi-
zobia, such as Phyllobacterium (Valverde et  al. 2005; Jiao et  al. 2015) and 
Aminobacter (Maynaud et al. 2012) from the family Phyllobacteriaceae; Shinella 
(Lin et al. 2008) and Agrobacterium (Yan et al. 2017) from the family Rhizobiaceae 
and Devosia (Rivas et al. 2002) from the family Hyphomicrobiaceae. Other genera 
belong to families that classically did not include rhizobia, such as Methylobacterium 
(Sy et al. 2001) and Microvirga (Ardley et al. 2012; Radl et al. 2014) from the fam-
ily Methylobacteriaceae and Ochrobactrum from the family Brucellaceae (Trujillo 
et al. 2005; Zurdo-Piñeiro et al. 2007).

Since the year 2000, several species belonging to two genera from 
Betaproteobacteria have also been reported as being able to induce nodules in sev-
eral legumes (Velázquez et  al. 2017b). When the first nodulating strains of 
Betaproteobacteria were reported, they were included in species of the genera 
Burkholderia and Ralstonia (Moulin et al. 2001; Chen et al. 2003), but they are cur-
rently included in the genera Paraburkholderia (Sawana et al. 2014; Dobritsa and 
Samadpour, 2016) and Cupriavidus (Vandamme and Coenye 2004) in both cases 
belonging to the family Burkholderiaceae (Velázquez et al. 2017b).

Fig. 4.1  Neighbour-joining phylogenetic tree based on nearly complete 16S rRNA gene sequences 
of type strains of 18 type species inducing legume nodules distributed in 7 families within the order 
Rhizobiales. The significance of each branch is indicated by a percentage of a bootstrap value 
calculated for 1000 subsets. Bar, 2 nt substitutions by 100 nt. Evolutionary analyses were con-
ducted in MEGA7 software. Asterisks show the type strains of species that nodulate legumes, 
when the type species of the genus is not the one with this ability
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4.3	 �Plant Growth-Promoting Mechanisms

The bacteria able to induce legume nodules present direct and indirect mechanisms of 
plant growth promotion. The direct mechanisms include nitrogen fixation, phosphate 
solubilization and production of phytohormones and ACC deaminase, while the 

Table 4.1  Recently described species of rhizobia able to nodulate legumes

Species Host legume or nodulated legumes References
Order Rhizobiales, family Rhizobiaceae
Genus Rhizobium
R. hidalgonense Phaseolus vulgaris Yan et al. (2017a, b)
R. esperanzae Phaseolus vulgaris Cordeiro et al. (2017)
R. hedysari Hedysarum multijugum Xu et al. (2017)
Genus Ensifer
E. shofinae Glycine max Chen et al. (2017)
Genus Agrobacterium
A. salinitolerans Sesbania cannabina Yan et al. (2017)
Order Rhizobiales, family Phyllobacteriaceae
Genus Mesorhizobium
M. delmotii Anthyllis vulneraria Mohamad et al. (2017)
M. 
prunaredense

Anthyllis vulneraria Mohamad et al. (2017)

M. 
helmanticense

Lotus corniculatus Marcos-García et al. 
(2017)

M. zhangyense Thermopsis lanceolata Xu et al. (2018)
M. wenxiniae Cicer arietinum Zhang et al. (2018)
M. sanjuanii Lotus tenuis Sannazzaro et al. (2018)
Order Rhizobiales, family Nitrobacteriaceae (‘Bradyrhizobiaceae’)
Genus Bradyrhizobium
B. centrolobii Centrolobium paraense Michel et al. (2017)
B. macuxiense Centrolobium paraense Michel et al. (2017)
B. brasilense Vigna unguiculata, Macroptilium atropurpureum Martins da Costa et al. 

(2017)
B. sacchari Vigna unguiculata, Macroptilium atropurpureum, 

Cajanus cajan
de Matos et al. (2017)

B. mercantei Deguelia costata Helene et al. (2017)
B. cajanii Cajanus cajan Araújo et al. (2017)
B. forestalis Inga sp., Swartzia sp. Martins da Costa et al. 

(2018)
B. algeriense Retama sphaerocarpa Ahnia et al. (2018)
B. ripae Indigofera rautanenii, Chamaecrista biensis, 

Vigna unguiculata
Bünger et al. (2018)

B. shewense Erythrina brucei Aserse et al. (2017)
Order Burkholderiales, family Burkholderiaceae
Genus Paraburkholderia
P. piptadeniae Piptadenia gonoacantha Bournaud et al. (2017)
P. ribeironis Piptadenia gonoacantha Bournaud et al. (2017)
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indirect mechanisms include production of siderophores, which can be also considered 
a direct mechanism because it enhances the Fe uptake by plants (García-Fraile et al. 
2012; Suárez-Moreno et al. 2012; Laranjo et al. 2014; Das et al. 2017; Gopalakrishnan 
et al. 2015; Patil et al., 2017; Vargas et al. 2017; Velázquez et al. 2017a).

Nitrogen fixation was the first-studied plant growth-promoting mechanism of 
rhizobia since Hellriegel and Wilfarth at the end of the nineteenth century estab-
lished that legume nodules are the responsible for nitrogen fixation (Hellriegel and 
Wilfarth 1888). From this time to date, many research works have focused on this 
ability in order to select the most effective rhizobial strains to be used as legume 
inoculants (Catroux et al. 2001; Checcucci et al. 2017). Nevertheless, the classic 
alpha rhizobia are specialized in the symbiotic nitrogen fixation with legumes 
(Remigi et al. 2016), and then, improvement of plant growth via nitrogen fixation is 
limited to these plants.

Phosphate solubilization is the second plant growth-promoting mechanism 
involved in nutrient mobilization presented by rhizobia (Rodríguez and Fraga, 1999; 
Thakur et al. 2014). Within them, the most active phosphate solubilizers in vitro are 
the species included into the genus Mesorhizobium (Peix et al. 2001; Rivas et al. 2006; 
Verma et al. 2013; Imen et al. 2015; Wdowiak-Wróbel and Małek 2016; Brígido et al. 
2017), although this mechanism is also presented by strains of Rhizobium (Chabot 
et al. 1996; Antoun et al. 1998; Alikhani et al. 2007; Abril et al. 2007; Sridevi et al. 
2007; Flores-Félix et al. 2013; Dahale et al. 2016; Othman and Tamimi 2016; Jiménez-
Gómez et al. 2018), Ensifer (formerly Sinorhizobium) (Ormeño et al. 2007; Villar-
Igea et al. 2007) and Bradyrhizobium (Boiero et al. 2007).

Also within the direct mechanisms, one of the most widely analysed is the pro-
duction of the phytohormone indoleacetic acid (IAA), which is widely extended 
among rhizobial species nodulating legumes, such as those from the genus 
Rhizobium (Datta and Basu 2000; Bhattacharjee et  al. 2012; García-Fraile et  al. 
2012; Kumar and Ram 2012; Flores-Félix et al. 2013; Jiménez-Gómez et al. 2018), 
Allorhizobium (Ghosh et al. 2015), Ensifer (formerly Sinorhizobium) (Bianco and 
Defez 2009; Dubey et  al. 2010), Mesorhizobium (Wdowiak-Wróbel and Małek 
2016; Vieira et al. 2017) and Bradyrhizobium (Boiero et al. 2007).

The production of aminocyclopropane-1-carboxylate (ACC) deaminase, respon-
sible for the cleavage of the ethylene precursor ACC into ammonia and α-ketobutyrate, 
has been reported in different species of rhizobia from different genera (Nascimento 
et  al. 2014, 2018), such as Rhizobium (Ma et  al. 2003; Duan et  al. 2009), 
Allorhizobium (Ghosh et  al. 2015), Ensifer (formerly Sinorhizobium) (Ma et  al. 
2004; Kong et  al. 2015), Mesorhizobium (Nascimento et  al. 2012) and 
Bradyrhizobium (Rangel et al. 2017), and in nodulating species of Methylobacterium 
(Ekimova et al. 2018).

Different genera of rhizobia have been reported to produce siderophores (Carson 
et al. 2000; García-Fraile et al. 2012; Gopalakrishnan et al., 2015; Vargas et al. 2017; 
Velázquez et al. 2017), for example, Rhizobium (Patel et al. 1988; Carson et al. 1992; 
Wright et  al. 2013; Jiménez-Gómez et  al. 2018), Mesorhizobium (Berraho et  al. 
1997; Datta and Chakrabartty 2014; Wdowiak-Wróbel and Małek 2016; Brígido 
et al. 2017; Demissie et al. 2018), Bradyrhizobium (Nambiar and Sivaramakrishnan 
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1987; Lesueur et  al. 1993; Abd-Alla 1998; Khandelwal et  al. 2002; Boiero et  al. 
2007), Allorhizobium (Ghosh et al. 2015) and Ensifer (Lynch et al. 2001).

Some of these plant growth-promoting mechanisms have also been reported for 
several strains of Paraburkholderia and Cupriavidus from Betaproteobacteria, 
among which we must highlight the ability to fix nitrogen in symbiosis with several 
legumes (Remigi et al. 2016). Moreover, some species of Paraburkholderia have 
been shown to be able to produce indoleacetic acid, siderophores or ACC deaminase 
(Suárez-Moreno et  al. 2012). Concretely, the species Paraburkholderia tuberum 
solubilizes phosphate and produces siderophores (Angus et al. 2013).

4.4	 �Growth Promotion of Legumes and Nonlegumes

The growth promotion of legumes by rhizobia via nitrogen fixation has been widely 
studied (Gopalakrishnan et al., 2015; Vargas et al. 2017; Velázquez et al. 2017b), 
and the inoculation with rhizobia of some legumes, such as soybean, has been per-
formed for several decades in America with increases in the production, overall in 
South American countries (Leggett et  al. 2017; Vargas et  al. 2017). Moreover, 
increases in the production of other legumes, such as Phaseolus vulgaris and 
Cajanus cajan, have been obtained after the inoculation with Rhizobium and 
Bradyrhizobium strains, respectively (Mulas et al. 2011; Araújo et al. 2015; Koskey 
et al. 2017; Barros et al. 2018; Samago et al. 2018; Wolde-Meskel et al. 2018; Yanni 
et al. 2018).

It has also been reported that the co-inoculation of different rhizobial strains can 
improve the yield of legumes such as common bean (de Oliveira Longatti et  al. 
2013; Diez-Mendez et al. 2015; da Conceição Jesus et al. 2018). In the same line, 
the co-inoculation with rhizobia and other bacteria increased the nitrogen content 
on soybean (Subramanian et al. 2015) and improved the growth of chickpea (Verma 
et al. 2012; Yadav and Verma 2014; Prasanna et al. 2017), galega (Egamberdieva 
et al. 2010), lentil (Khanna and Sharma 2011), soybean (Hungria et al. 2013; Nimnoi 
et al. 2014; Htwe et al. 2018), peanut (Vicario et al. 2016) and mungbean (Kaur and 
Khanna 2016; Tarafder et al. 2016; Qureshi et al. 2011).

The co-inoculation of rhizobia and arbuscular mycorrhiza increases the nitrogen 
fixation in common bean (Tajini et al. 2011) and soybean (Meng et al. 2015), the 
nitrogen content on chickpea (Tavasolee et al. 2011) and pigeon pea (Bhattacharjee 
and Sharma 2012) and the productivity of pea (Shinde and Thakur 2016), cowpea 
(Haro et  al. 2018), soybean (Hemmat Jou and Besalatpour 2018), Styloshantes 
(Crespo Flores et al. 2014), faba bean in alkaline soils (Abd-Alla et al. 2014; Hemid 
et al. 2014) and garden pea in acidic soils (Bai et al. 2017). Dual inoculations of 
rhizobia and arbuscular mycorrhiza also increase the grain protein content in chick-
pea under moderate water deficit (Oliveira et al. 2017).

In the last decades, also the study of the effect of rhizobial inoculation on the 
legume growth under different stresses is gaining interest, and several works have 
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been performed in different legumes (Naveed et al. 2017). Drought and salt stresses 
are major limiting factors to plant productivity; nevertheless, inoculation with 
selected strains of rhizobia able to survive, grow and effectively nodulate legumes 
under these stress conditions can improve their productivity, quality and drought 
stress response (Faghire et al. 2012; Aamir et al. 2013; El-Akhal et al. 2013; Sharma 
et al. 2013; Bertrand et al. 2015; Staudinger et al. 2016; Yanni et al. 2016; Wang 
et al. 2016; Defez et al. 2017; Egamberdieva et al. 2017; Oliveira et al. 2017).

Several works also reported that the co-inoculation of different rhizobial strains 
(Ali et al. 2017; Ullah et al. 2017) and that of rhizobia and other bacteria or arbuscu-
lar mycorrhizal fungi can be a strategy to mitigate salt or drought stress (Ahmad et al. 
2011a, b, 2012, 2013; Soliman et al. 2012; Martínez et al. 2015; Cerezini et al. 2016; 
Egamberdieva et al. 2016a, b; Ren et al. 2016; Zhu et al. 2016; da Piedade Melo et al. 
2017; Fukami et al. 2017; Oliveira et al. 2017). Moreover, the co-inoculation of rhi-
zobia and other bacteria can alleviate other stresses, such as copper stress (Challougui 
et al. 2015; Fatnassi et al. 2015).

Concerning the promotion of growth of nonlegumes, although the first works 
were carried out in the 1990s (Chabot et al. 1996; Yanni et al. 1997), most works 
have been carried out after the year 2000 (Velázquez et  al. 2017a). Several of 
these works focused on the growth promotion of cereals by Rhizobium in rice 
(Yanni et  al. 2001; Yanni and Dazzo 2010; Bhattacharjee et  al. 2012; Granada 
et al. 2014), maize (Gutiérrez-Zamora and Martínez-Romero 2001; Shing et al. 
2013) and wheat (Yanni et al. 2016) and by Mesorhizobium strains in barley (Peix 
et al. 2001). Although there are few reports to date, co-inoculation with rhizobia 
and other bacteria also increases the growth of some cereals, such as rice (Hasan 
et al. 2014; Tan et al. 2015).

Several works also showed that rhizobial inoculation also increased the growth 
of oil-containing plants such as canola and sunflowers, with high interest for human 
nutrition (McKevith 2005) and biodiesel production (Pimentel and Patzek 2005, Ge 
et al. 2017). The promotion of growth and the nitrogen uptake increase were reported 
by Alami et al. (2000) after the inoculation of a strain from the genus Rhizobium in 
sunflower plantlets. The inoculation with strains of the genus Rhizobium enhances 
the root growth of canola plants (Noel et al. 1996) and, under salinity stress condi-
tions, treatments with different rhizobial strains increase the plant height and the dry 
weight of canola shoots and, moreover, the leaf area and relative water content 
(Saghafi et al. 2018).

In addition, the ability of rhizobia to promote the growth of fresh vegetables has 
been studied by several authors, dating also the first works in the 1990s (Chabot 
et al. 1996; Antoun et al. 1998). Nevertheless, most studies have been carried out in 
the recent years showing that Rhizobium strains are able to promote the growth and 
quality of tomato and pepper (García-Fraile et al. 2012), lettuce and carrots (Flores-
Félix et  al. 2013), strawberries (Flores-Félix et  al. 2015, 2018), arugula (Rubio-
Canalejas et al. 2016) and spinach (Jiménez-Gómez et al. 2018). The high potential 
of rhizobia to promote the growth of vegetables, together with the high safety level 
of these bacteria, highlights the need to perform more studies about the effect of 
different rhizobial species on the growth of other freshly consumed vegetables.
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4.5	 �Biocontrol Mechanisms

The mechanisms of biocontrol presented by bacteria nodulating legumes have been 
less studied than those involved in plant growth promotion. Nevertheless, for some 
strains belonging to several rhizobial genera and species, different biocontrol mech-
anisms have been reported, including mycoparasitism, production of antibiotics and 
bacteriocins, antifungal metabolites, such as hydrocyanic acid (HCN), and phyto-
alexins, as well as the induction of systemic resistance in plants (Deshwal et  al. 
2003b; Das et al. 2017).

Concerning mycoparasitism, in 1978, it was reported that Bradyrhizobium 
japonicum colonized growing hyphal tips of Phytophthora megasperma being 
observed inside the hyphae. A decrease in the symptoms was observed with the 
application of B. japonicum to the soil after soybean planting suggesting that sapro-
phytic soil rhizobia may reduce Phytophthora root rot by parasitizing hyphae of the 
fungus (Tu 1978). Also, Antoun et al. (1978) showed that strains of Ensifer meliloti 
(Sinorhizobium meliloti) were effective against Fusarium oxysporum in lucerne 
plants.

After this date, several works reported the in vitro inhibition of several fungi by 
strains of different rhizobial genera. For example, some Bradyrhizobium strains 
inhibit the mycelial growth and sclerotial formation and germination of Sclerotium 
rolfsii (Balasundaran and Sarbhoy 1988) and Rhizoctonia solani (Kelemu et  al. 
1995). In the same line, different fast-growing rhizobial strains are able to inhibit 
the growth of Phytophtora cinnamomi (Malajczuk et al. 1984), Sclerotium rolfsii 
(Balasundaran and Sarbhoy 1988), Fusarium, Pythium and Rhizoctonia (Ozkoc and 
Deliveli 2001).

In 1978, the production of bacteriocins by Rhizobium trifolii strains (currently R. 
leguminosarum) was reported, which were dominant in mixed cultures and were 
growing in peat, suggesting that they have advantages for competition (Schwinghamer 
and Brockwell 1978). Also, bacteriocin production by Rhizobium japonicum (cur-
rently B. japonicum) was also reported, although in this case, the producing strains 
were less competitive than the nonproducing ones (Gross and Vidaver 1978). More 
recently, the production of bacteriocins has been reported for other strains from 
Rhizobium (Hafeez et  al. 2005; Ansari and Rao 2014), Bradyrhizobium (Hafeez 
et  al. 2005) and several rhizobial strains nodulating mothbean, clusterbean and 
mungbean (Mondal et al. 2017). In addition, the genome of a bacteriocin-producing 
strain of B. japonicum has been sequenced, obtaining a better understanding of this 
molecule (Kohlmeier et al. 2015).

The production of peptide antibiotics active against other rhizobial strains, such 
as trifolitoxin, has also been reported for R. leguminosarum sv. trifolii (Triplett and 
Barta 1987) and Rhizobium etli (Robleto et al. 1997, 1998). The rhizobitoxine pro-
duced by B. japonicum (Minamisawa 1989) and Bradyrhizobium elkanii (Yuhashi 
et al. 2000) reduces the mycelial growth of Macrophomina phaseolina (Chakraborty 
and Purkayastha 1984). More recently, the analysis of the genetic region encoding 
a novel rhizobiocin produced by R. leguminosarum sv. viciae has been reported 
(Venter et al. 2001).
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New genome sequences of rhizobia have shown the presence of bioclusters cod-
ing for secondary metabolites, such as the HCN, an antifungal metabolite produced 
by some rhizobia, although the abundance of strains producing this compound 
among rhizobia is low to date. For example, Antoun et al. (1998) reported the HCN 
production in three strains of R. leguminosarum, Arfaoui et al. (2006) in six strains 
of rhizobia-nodulating chickpea, Chandra et al. (2007) in a strain of Mesorhizobium 
loti and Priyanka and Wati (2017) in two strains of rhizobia isolated from Vigna 
nodules.

The production of siderophores, in addition to being a plant growth-promoting 
mechanism, is also a biocontrol mechanism because these compounds have high 
affinity for ferric iron-forming complexes which remove this ion from the rhizo-
sphere preventing the growth and plant colonization by pathogenic microorganisms 
(Saha et al. 2016). Several types of siderophores are produced by different rhizobial 
species and genera (Das et al. 2017), and we recently found that Rhizobium laguer-
reae produced carboxylate-type siderophores (Jiménez-Gómez et al. 2018).

Induced systemic resistance is a plant defence mechanism against different types 
of pathogens which is elicited by several rhizobial strains alone (Elbadry et al. 2006) 
or combined with other bacteria (Dutta et al. 2008), endophytic fungi or arbuscular 
mycorrhiza (AM) (Martinuz et al. 2012; Gao et al. 2018a, b). The Rhizobium etli 
lipopolysaccharides have been shown to be agents inducing systemic resistance to 
infection by the cyst nematode Globodera pallida in potato roots (Reitz et al. 2000) 
and those of R. leguminosarum against the parasitic plant Orobanche crenata in pea 
(Mabrouk et al. 2016).

Rhizobial strains are also able to induce the production of some phytoalexins in 
plants treated with fungal pathogens, as occurred in the case of pea infected with 
Fusarium solani and inoculated with R. leguminosarum (Chakraborty and 
Chakraborty 1989), in the case of chickpea infected with Fusarium oxysporum and 
inoculated with rhizobia nodulating this legume (Arfaoui et al. 2007) and in the case 
of lucerne infected with Phoma medicaginis and treated with Ensifer medicae 
(Sinorhizobium medicae) and the AM Funneliformis mosseae (Gao et al. 2018a, b).

As occurred in the case of the plant growth-promoting mechanisms, those 
involved in the biocontrol of plant pathogens have been more studied in species of 
the classic rhizobial genera than in those of the new genus Paraburkholderia. 
Nevertheless, recent studies have been performed in legume-nodulating species of 
the genus Paraburkholderia, showing that three species of this genus showed anti-
fungal activity (Eberl and Vandamme 2016). Therefore, also in this case, more stud-
ies should be performed to understand the biocontrol mechanisms in 
legume-nodulating species of this last genus.
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4.6	 �Biocontrol of Phytopathogens from Legumes 
and Nonlegumes

Concerning the direct biocontrol of phytopathogens by rhizobia in plant assays, 
there are few studies to date (Das et al. 2017). Nevertheless, some studies showed 
the potential of rhizobial strains for the inhibition of some pathogenic fungi, such as 
Macrophomina phaseolina (Omar and Abd-Alla, 1998; Siddiqui et al. 2000; Arora 
et al. 2001; Deshwal et al. 2003a; Al-Ani et al. 2012), Fusarium solani (Omar and 
Abd-Alla, 1998; Rakib et  al. 2012), Fusarium oxysporum (Arfaoui et  al. 2006; 
Kumar et al. 2011), Rhizoctonia solani (Omar and Abd-Alla, 1998; Hemissi et al. 
2011) and Phytium sp. (Bardin et al., 2004) .

The co-inoculation of strains from Rhizobium and Glomus increased the biocon-
trol of the Fusarium wilt of chickpea (Singh et al. 2010) and the Fusarium root rot 
of Phaseolus vulgaris (Dar et al. 1997), also protecting Vicia faba plants against 
Botrytis fabae (Rabie 1998). The co-inoculations of Rhizobium and Trichoderma 
have been also shown to reduce the damping-off and root rot diseases in several 
legumes (Shaban and El-Bramawy 2011) and the incidence of collar rot disease 
caused by Sclerotium rolfsii in groundnut (Ganesan et al. 2007). In the same way, 
the co-inoculation of Ensifer (Sinorhizobium) and Pseudomonas significantly 
reduced Fusarium wilt in pigeon pea (Kumar et al. 2010).

Other studies showed a reduction in galling and nematode multiplication of 
Meloidogyne incognita in chickpea when the plants were inoculated with a strain of 
rhizobia nodulating this legume (Akhtar and Siddiqui 2008). The dual inoculation 
of Rhizobium and other Pseudomonas strains in lentils also controlled Meloidogyne 
javanica (Siddiqui et al. 2007). The co-inoculation of Rhizobium with Pseudomonas 
or Bacillus strains decreases the wilting of Fusarium oxysporum in lentils inocu-
lated with this pathogen (Akhtar et al. 2010) and that of Rhizobium or Bradyrhizobium 
with Bacillus improved the bean root rot control in common bean and peanut, 
respectively (Estevez de Jensen et al. 2002; Yuttavanichakul et al. 2012).

The co-inoculation with rhizobia and arbuscular mycorrhiza could control soy-
bean red crown rot in acidic soils (Gao et al. 2012). The co-inoculation of tomato 
with Rhizobium etli and the arbuscular mycorrhiza Glomus intraradicis leads to a 
60% reduction in the galling by Meloidogyne incognita (Reimann et al. 2008). The 
tripartite inoculation of Rhizobium with Glomus and Pseudomonas also controlled 
the root rot disease in chickpea caused by Meloidogyne incognita and M. phaseo-
lina (Akhtar and Siddiqui 2008).

The co-inoculation with Rhizobium and Trichoderma of faba bean plants has 
been shown to reduce 57%, on average, the incidence of chocolate spot disease 
produced by Botrytis fabae and increasing 23%, on average, of the yield of faba 
bean (Saber et al. 2009). Moreover, the dual inoculation of these microorganisms 
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reduced the stem rot incidence promoting the growth of the groundnut (Ganesan 
et  al. 2007), as well as the incidence of the damping-off and root rot in several 
legumes such as Vicia, Cicer and Lupinus (Shaban et al. 2011).

Although all these studies showed that rhizobia are promising bacteria to control 
different plant pathogens through different mechanisms, this ability has been poorly 
studied to date. Therefore, also taking into account the ability of these bacteria to 
improve the plant growth of legumes and nonlegumes and, especially, their safety as 
biofertilizers for human health, the effects of rhizobia on plant health should be 
further studied.

4.7	 �Conclusions

Bacteria-inducing legume nodules, commonly called rhizobia, are mainly known to 
produce beneficial effects on legumes via atmospheric nitrogen fixation. However, 
they are also able to promote the growth of other economically valuable crops, such 
as cereals, oleaginous plants or horticultural crops through other plant growth-
promoting mechanisms, such as solubilization of phosphate and production of 
indoleacetic acid, among others. Since this group of bacteria is considered safe for 
human, animal and plant health and for the environment, they are good candidates 
for the formulation of biofertilizers. The ability of rhizobia to produce compounds 
involved in biocontrol and to induce systemic resistance in plants also makes them 
good candidates as biocontrollers, although research in this field is still limited. 
Thus, further studies are necessary to be performed in order to include rhizobia in 
the formulation of biopesticides.
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