76 research outputs found

    Enhanced model of gear transmission dynamics for condition monitoring applications: Effects of torque, friction and bearing clearance

    Get PDF
    Gear transmissions remain as one of the most complex mechanical systems from the point of view of noise and vibration behavior. Research on gear modeling leading to the obtaining of models capable of accurately reproduce the dynamic behavior of real gear transmissions has spread out the last decades. Most of these models, although useful for design stages, often include simplifications that impede their application for condition monitoring purposes. Trying to filling this gap, the model presented in this paper allows us to simulate gear transmission dynamics including most of these features usually neglected by the state of the art models. This work presents a model capable of considering simultaneously the internal excitations due to the variable meshing stiffness (including the coupling among successive tooth pairs in contact, the non-linearity linked with the contacts between surfaces and the dissipative effects), and those excitations consequence of the bearing variable compliance (including clearances or pre-loads). The model can also simulate gear dynamics in a realistic torque dependent scenario. The proposed model combines a hybrid formulation for calculation of meshing forces with a non-linear variable compliance approach for bearings. Meshing forces are obtained by means of a double approach which combines numerical and analytical aspects. The methodology used provides a detailed description of the meshing forces, allowing their calculation even when gear center distance is modified due to shaft and bearing flexibilities, which are unavoidable in real transmissions. On the other hand, forces at bearing level were obtained considering a variable number of supporting rolling elements, depending on the applied load and clearances. Both formulations have been developed and applied to the simulation of the vibration of a sample transmission, focusing the attention on the transmitted load, friction meshing forces and bearing preloads.The authors would like to acknowledge Project DPI 2013-44860 funded by the Spanish Ministry of Science and Technology and Project PRX14/00451 funded by the Spanish Ministry of Education, Culture and Sports

    Gear transmission dynamic: Effects of tooth profile deviations and support flexibility

    Get PDF
    In this work a non-linear dynamic model of spur gear transmissions previously developed by the authors is extended to include both desired (relief) and undesired (manufacture errors) deviations in the tooth profile. The model uses a hybrid method for the calculation of meshing forces, which combines FE analysis and analytical formulation, so that it enables a very straightforward implementation of the tooth profile deviations. The model approach handles well non-linearity due to the variable meshing stiffness and the clearances involved in gear dynamics, also including the same phenomena linked to bearings. In order to assess the ability of the model to simulate the impact of the deviations on the transmission dynamics, an example is presented including profile deviations under different values of transmitted torque. Several results of this example implementation are presented, showing the model's effectiveness.This paper has been developed in the framework of Project DPI2006-14348 funded by the Spanish Ministry of Science and Technology

    Non-stationary dynamic analysis of a wind turbine power drivetrain: Offshore considerations

    Get PDF
    This paper presents a multi-body model for studying the non-stationary dynamic behaviour of a wind turbine power drivetrain. The model includes some offshore considerations, such as the extra degrees of freedom and boundary conditions that installation on an offshore floating platform can add. The studied problem is an offshore implementation, with seafloor depths of the order of a hundred metres, making it necessary to use a floating platform. Special attention is paid to the characteristics of the combined offshore buoy support and detailed model of the power train, in order to assess the impacts of buoy movement on forces on gears and bearings. A multi-body analysis code was used to develop the model, and a conventional wind turbine set-up was implemented as an example. Gearbox dynamic behaviour was simulated for common manoeuvres such as a start-up and an emergency stop, and the results are presented and discussed.The authors like to thanks the company Apia XXI for supporting part of the research presented by the Project DINAER. Moreover, some parts of the developments presented have been made in the framework of Project DPI2006-14348 funded by the Spanish Ministry of Science and Technology

    Efficiency analysis of spur gears with a shifting profile

    Get PDF
    A model for the assessment of the energy efficiency of spur gears is presented in this study, which considers a shifting profile under different operating conditions (40–600 Nm and 1500–6000 rpm). Three factors affect the power losses resulting from friction forces in a lubricated spur gear pair, namely, the friction coefficient, sliding velocity and load sharing ratio. Friction forces were implemented using a Coulomb’s model with a constant friction coefficient which is the well-known Niemann formulation. Three different scenarios were developed to assess the effect of the shifting profile on the efficiency under different operating conditions. The first kept the exterior radii constant, the second maintained the theoretical contact ratio whilst in the third the exterior radii is defined by the shifting coefficient. The numerical results were compared with a traditional approach to assess the results.The authors would like to acknowledge Project DPI2013-44860 funded by the Spanish Ministry of Science and Technology and the COST ACTION TU 1105 for supporting this research

    Advanced model for the calculation of meshing forces in spur gear planetary transmissions

    Get PDF
    This paper presents a planar spur gear planetary transmission model, describing in great detail aspects such as the geometric definition of geometric overlaps and the contact forces calculation, thus facilitating the reproducibility of results by fellow researchers. The planetary model is based on a mesh model already used by the authors in the study of external gear ordinary transmissions. The model has been improved and extended to allow for the internal meshing simulation, taking into consideration three possible contact scenarios: involute–involute contact, and two types of involute-tip rounding arc contact. The 6 degrees of freedom system solved for a single couple of gears has been expanded to 6 + 3n degrees of freedom for a planetary transmission with n planets. Furthermore, the coupling of deformations through the gear bodies’ flexibility has been also implemented and assessed. A step-by-step integration of the planetary is presented, using two typical configurations, demonstrating the model capability for transmission simulation of a planetary with distinct pressure angles on each mesh. The model is also put to the test with the simulation of the transmission error of a real transmission system, including the effect of different levels of external torque. The model is assessed by means of quasi-static analyses, and the meshing stiffness values are compared with those provided by the literature.The authors would like to acknowledge Project DPI2013-44860 funded by the Spanish Ministry of Science and Technology

    A proteomic approach for the identification of novel lysine methyltransferase substrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signaling via protein lysine methylation has been proposed to play a central role in the regulation of many physiologic and pathologic programs. In contrast to other post-translational modifications such as phosphorylation, proteome-wide approaches to investigate lysine methylation networks do not exist.</p> <p>Results</p> <p>In the current study, we used the ProtoArray<sup>® </sup>platform, containing over 9,500 human proteins, and developed and optimized a system for proteome-wide identification of novel methylation events catalyzed by the protein lysine methyltransferase (PKMT) SETD6. This enzyme had previously been shown to methylate the transcription factor RelA, but it was not known whether SETD6 had other substrates. By using two independent detection approaches, we identified novel candidate substrates for SETD6, and verified that all targets tested <it>in vitro </it>and in cells were genuine substrates.</p> <p>Conclusions</p> <p>We describe a novel proteome-wide methodology for the identification of new PKMT substrates. This technological advance may lead to a better understanding of the enzymatic activity and substrate specificity of the large number (more than 50) PKMTs present in the human proteome, most of which are uncharacterized.</p

    Coupling dynamics of a geared multibody system supported by Elastohydrodynamic lubricated cylindrical joints

    Get PDF
    A comprehensive computational methodology to study the coupling dynamics of a geared multibody system supported by ElastoHydroDynamic (EHD) lubricated cylindrical joints is proposed throughout this work. The geared multibody system is described by using the Absolute-Coordinate-Based (ACB) method that combines the Natural Coordinate Formulation (NCF) describing rigid bodies and the Absolute Nodal Coordinate Formulation (ANCF) characterizing the flexible bodies. Based on the finite-short bearing approach, the EHD lubrication condition for the cylindrical joints supporting the geared system is considered here. The lubrication forces developed at the cylindrical joints are obtained by solving the Reynolds’ equation via the finite difference method. For the evaluation of the normal contact forces of gear pair along the Line Of Action (LOA), the time-varying mesh stiffness, mesh damping and Static Transmission Error (STE) are utilized. The time-varying mesh stiffness is calculated by using the Chaari’s methodology. The forces of sliding friction along the Off-Line-Of-Action (OLOA) are computed by using the Coulomb friction models with a time-varying coefficient of friction under the EHD lubrication condition of gear teeth. Finally, two numerical examples of application are presented to demonstrate and validate the proposed methodology.National Natural Science Foundations of China under Grant 11290151, 11221202 and 11002022, Beijing Higher Education Young Elite Teacher Project under Grant YETP1201

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore