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Abstract 
 
A comprehensive computational methodology to study the coupling dynamics of a 

geared multibody system supported by ElastoHydroDynamic (EHD) lubricated 

cylindrical joints is proposed throughout this work. The geared multibody system is 

described by using the Absolute-Coordinate-Based (ACB) method that combines the 

Natural Coordinate Formulation (NCF) describing rigid bodies and the Absolute 

Nodal Coordinate Formulation (ANCF) characterizing the flexible bodies. Based on 

the finite-short bearing approach, the EHD lubrication condition for the cylindrical 

joints supporting the geared system is considered here. The lubrication forces 

developed at the cylindrical joints are obtained by solving the Reynolds’ equation via 

the finite difference method. For the evaluation of the normal contact forces of gear 

pair along the Line Of Action (LOA), the time-varying mesh stiffness, mesh damping 

and Static Transmission Error (STE) are utilized. The time-varying mesh stiffness is 

calculated by using the Chaari’s methodology. The forces of sliding friction along the 

Off-Line-Of-Action (OLOA) are computed by using the Coulomb friction models 

with a time-varying coefficient of friction under the EHD lubrication condition of 

gear teeth. Finally, two numerical examples of application are presented to 

demonstrate and validate the proposed methodology.  
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1. Introduction 

The geared mechanical systems have been widely used in many industrial fields, 

such as the vehicle-geared reducer, the geared rotors, which are often supported by 

lubricated bearings. For the convenience of dynamic analysis, the lubricated bearings 

are in general considered as the lubricated cylindrical joints at the ends of 

transmission shafts. In order to extend the service life of gear teeth, the lubricant is 

also introduced into the clearance of gear teeth. Thus, it is clear that an actual geared 

system supported by lubricated cylindrical joints may exhibit very complex coupling 

dynamic features due to the part flexibility and the lubricant phenomena. Therefore, a 

correct and deep understanding of the coupling dynamics of this type of mechanical 

systems is of primordial importance to control the reliability and performance of the 

system, as well as to ensure the smooth and safe operate conditions. 

In the field of multibody methodologies, the dynamics of mechanical systems 

with the clearance and lubricated effects of joints considered has attracted much 

attention over the past few decades [1-6]. The range of applications of most of these 

works, however, is somewhat limited because they have focused on the general 

multibody systems without including gear bodies. Tian et al. [7], Flores and 

Lankarani [8], Stefanelli et al. [9], Brutti et al. [10] and Liu et al. [11] are among the 

very few researchers who performed the dynamic analysis of spatial cylindrical joint 

with or without lubrication conditions. In these works, the lubricant effects were 

studied under the assumptions of either an infinitely-short or an infinitely-long 

journal/bearing for the cylindrical joint. Therefore, it is possible to derive the 

analytical expressions to describe the lubricant pressures by neglecting some terms in 

the Reynolds’ equation according to the HydroDynamic (HD) theory [12]. Once the 

lubricant pressures are known, the corresponding analytical equations for the 

lubrication forces can be obtained by using the Gümbel’s conditions or Sommerfeld’s 

conditions according to HD approach [13]. With the advent of Computational Fluid 

Dynamics (CFD) and Fluid-Structure Interaction (FSI) techniques, the dynamic 

analysis of a multibody system with lubricated bearings can exhibit the complex 
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behavior due to the bearing flexibility. It is not surprising that the subject of EHD 

analysis for lubricated joints has deserved the attention of significant researchers in 

the field of tribology [14, 15]. For instance, Liu et al. [16], Shenoy et al. [17] and 

Attia et al. [18] performed the EHD analysis for the lubricated high-speed 

rotor-bearing systems. Their numerical results suggested that the local bearing 

deformations expand the pressure space in the clearance and, hence, increase the 

minimal film thickness. More recently, Slim et al. [19] comparatively studied the 

acoustic and vibrational behaviors of oil lubricated journal bearings by using the HD 

and EHD approaches. They showed that the sound pressure level of the bearing is 

significantly influenced by the flexibility of bearing liner, and the bearing noise 

decreases due to the EHD lubrication since the film thickness is larger than that of HD 

lubrication. Tian and his co-workers [20] proposed a new EHD lubricated cylindrical 

model developed under the framework of flexible multibody formulation. The 

lubricated cylindrical joints in a flexible multibody system are described by using 

Absolute Coordinate Based (ACB) method, which combines the Natural Coordinate 

Formulation (NCF) [21] for rigid bodies and the Absolute Nodal Coordinate 

Formulation (ANCF) [22] for flexible bodies. The ANCF initially presented by 

Shabana [22], has become a benchmark in the development of dynamics of flexible 

multibody systems [23, 24].  

Over the past few decades, a good number of theoretical and experimental 

studies have been proposed to model and analyze geared mechanisms, especially 

geared rotor systems [25]. Kahraman and Singh [26, 27] demonstrated that the gear 

backlash and time-varying mesh stiffness can significantly affect the geared 

mechanism response. Theodossiades and Natsiavas [28] investigated the dynamic 

responses and stability characteristics of a planar rotor system interconnected with 

gear pairs and supported by oil journal bearings. In their study, the gear mesh stiffness 

in a time Fourier series form was utilized and the gear backlash was modeled as a 

piecewise linear function. The flexibility of the interconnecting shafts was also 

modeled by employing the component mode synthesis method. Shiau et al. [29] 

presented a hybrid method of the finite element method and the general polynomial 
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expansion method to study the dynamic characteristics of geared rotor systems. 

Fernandez del Rincon and his co-authors [30] presented an advanced model for the 

analysis of contact forces and deformations in spur gear transmissions. They 

formulated the deformation at each gear contact point as a combination of a global 

term and a local term. Rao et al. [31] studied the lateral response of a geared-rotor 

system with flexible shafts under torsional excitation, in which the flexible shafts 

were modeled as a 2-node shaft element with 10 degrees-of-freedom (DOFs). 

However, a simple linear spring-damper approach was utilized to model the contact 

interaction between each gear pair, in which the spring stiffness was assumed to be 

constant [32]. Baguet and Jacquenot [33] investigated the coupling dynamics of a 

hydrodynamic lubricated planar gear-shaft-bearing system. The flexible shafts were 

modeled by using the classical 2-node finite elements with 6 DOFs per node for 

bending, torsional and axial displacements. The nonlinear dynamic responses of a 

planar gear-bearing system subject to the nonlinear suspension effects, nonlinear 

oil-film force and nonlinear gear mesh force have also been the object of intense 

research by Wan and Jian [34]. Their outcomes showed that the system exhibits a 

varied range of periodic, sub-harmonic and chaotic behaviors. It should be pointed out 

that the studies mentioned above on the geared mechanisms are only valid for the HD 

theory and for planar cases. In addition, the joint constraint conditions have not yet 

been addressed and, therefore, the final derived equations of motion are expressed by 

a set of Ordinary Differential Equations (ODE). Consequently, many important joint 

dynamic features of geared mechanisms can not be considered, such as the joint 

reaction forces, which play a key role, for instance, in the design of control scheme of 

the geared system. Using the modal superposition method, Vinayak and Singh [35] 

extended the multibody dynamics modeling strategy for rigid gears to include 

compliant gear bodies in multiple-mesh transmission system. Wang et al. [36] also 

investigated the coupling dynamics of the geared mechanism based on the theoretic 

framework of multibody system dynamics. Chang [37] considered the coupling 

dynamics of a spatial quick-return mechanism with a flexible geared rotor, in which 

the flexible multibody model of the geared mechanism was established by using the 
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Hamilton’s principle and the flexible rods were model by using the modal shape 

function based on the Timoshenko-beam theory. 

The gear mesh action is generally characterized by the combination of rolling 

and sliding under EHD lubrication conditions. The forces of sliding friction developed 

between the gear tooth surfaces are believed to be one of the major sources of gear 

vibration and noise, especially under high-torque and low-speed conditions, because 

the rolling resistance is considerably smaller than the sliding resistance [38, 39]. 

Many simple and empirical friction force models have been incorporated in various 

forms in previous investigations, such as the Coulomb model with a constant 

coefficient of friction [40, 41]. Nevertheless, the tribological conditions of the contact 

gear tooth surfaces can change periodically due to time-varying mesh properties and 

also due to lubricant film thickness as the gears are rolling. Hence, the value of the 

coefficient of friction also varies instantaneously with the spatial position of teeth and 

the direction of friction force changes at the meshing point. With the intent of 

predicting the traction force generated by the lubricant, the EHD theory has been 

extensively utilized to explain the interface friction in gears. Xu et al. [42, 43] 

proposed a novel friction model that uses a friction coefficient expression obtained 

from a large number of EHD lubrication analyses covering typical ranges of 

fundamental parameters associated with gear teeth, such as the surface roughness, 

geometry and lubricant action. He et al. [44] studied the influence of different sliding 

friction force models on the dynamic response of a pair of spur gears, where the 

predicted friction force was validated from measurement data. 

In this paper, based on the previous studies on the mathematical mesh models for 

lubricated gear pairs and the dynamics of flexible multibody mechanisms with 

lubricated joints, the coupling dynamics of geared multibody mechanisms with EHD 

lubrication conditions has been investigated. The remaining of the paper is organized 

as follows. In Section 2, the multibody model of a classic geared rotor based on ACB 

method is briefly described. The flexible bodies including the flexible bearings and 

shafts are modeled by using the finite elements of ANCF. In turn, the rigid bodies 

including the short journal in the bearing and the gears are modeled by using NCF. In 
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Section 3, the mathematical models of normal contact forces of gear teeth along LOA 

and forces of sliding friction along OLOA are described. In the case of EHD 

lubricated cylindrical joints, the lubrication pressures are evaluated by using the finite 

difference method. The time-varying gear mesh stiffness, time-varying gear mesh 

damping and time-varying static transmission error are also taken into account. 

Section 4 presents an efficient computational algorithm to solve the set of dynamic 

equations for the geared multibody system. In Section 5, a parametric study of a 

geared rotor-bearing multibody system supported by 4 EHD lubricated cylindrical 

joints is performed with the intent to validate the proposed approach. The influence of 

the mathematical model parameters and gear design parameters on the dynamic 

responses of the system is carefully studied. Then, the coupling dynamics of a 

quick-return mechanism driven by a lubricated geared rotor is also analyzed and 

discussed. Finally, in Section 6 the main conclusions of this study and some future 

perspectives are addressed. 

2. Multibody model of a geared rotor based on ACB method 

Figure 1 shows the configuration of a classical geared rotor. In the present study, 

the Absolute Coordinate Based (ACB) method, that combines the Natural Coordinate 

Formulation (NCF) [21] describing rigid bodies and the Absolute Nodal Coordinate 

Formulation (ANCF) [22] characterizing flexible bodies, is utilized to represent the 

multibody model of the geared system depicted in Fig. 1. This method has found 

many successful applications from the computational point of view since the mass 

matrix for the whole rigid-flexible system keeps constant and the system constraint 

conditions can be easily simplified [7, 20, 45, 46]. 

Flexible shaft
Rigid journal

Rigid gear

Rigid pinion

flexible bearing liner

 
Fig. 1 Rigid-flexible mulitbody model of a geared rotor  
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In Fig. 1, the rigid gear and pinion are installed on 2 flexible shafts, which are 

modeled by using NCF. According to the work by García De Jalón and Bayo [21] the 

motion of a rigid body can be defined through 2 position vectors of 2 basic points and 

2 unit vectors, as it is illustrated in Fig. 2. Thus, for instance, the generalized 

coordinates defined in the global coordinate system for the rigid gear can be 

expressed as 
1 2

TT T T T
P P p p⎡ ⎤⎣ ⎦r r ζ η . Therefore, a rigid body can be described via 

12 generalized coordinates of NCF, which indicates that there still exist 6 constraint 

equations for the rigid body itself. As mentioned before, the NCF describing rigid 

bodies leads to a constant mass matrix for a rigid multibody system. The fundamental 

circles to define the gear pair are represented in Fig. 2. It can be observed that the 

pitch circles are tangent with each other at the pitch point P. 
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Fig. 2 A pair of spur gears described by NCF 

 

In the present study, the flexible shafts shown in Fig. 1 are meshed by using the 

fully parameterized beam elements of ANCF [47, 48]. As shown in Fig. 3, the 2-node 

beam element with circular cross-section is defined as 

, , , , , ,[ , , , , , , , ]Ti i x i y i z j j x j y j z=e r r r r r r r r , includng 24 global nodal coordinates. The ANCF 

also leads to a constant mass matrix for a flexible multibody system since all the 

nodal coordinates of ANCF elements are defined in a global coordinate system. 

Another special feature associated with ANCF elements is that it employs the 

mathematical definition of the slopes, instead of the rotational coordinates, to describe 

both rotation and deformation of a finite element. Thus, the ANCF originally 

proposed by Shabana [22], as an accurate, non-incremental finite element method to 
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accurately deal with the dynamics of flexible multibody systems subject to both large 

overall rotation and large deformation, has become a benchmark in the development 

of dynamics of flexible multibody systems [23, 24]. The bending and torsional 

behaviors of ANCF element have been validated in the work by Liu et al. [46]. 

Therefore, the bending-torsional coupled behaviors of a flexible gear shaft can be 

accurately predicted. 

 

ri,y

ri,x

ri,z
i

ri rj

rj,x

rj,y

rj,z
j

X
Y

Z
  

Fig. 3 A fully parameterized beam elements with circular cross-section of ANCF 

 

Finally, for the 4 lubricated cylindrical joints supporting the flexible shafts, the 

NCF is utilized to model the rigid journal in the bearing liner, and the 20-node 

hexahedral elements of ANCF are used to model the flexible bearing liner. As shown 

in Fig. 4, ξ-η-ζ denotes the local coordinate system of bearing with its origin at the 

mass center of bearing Ob. The readers can also find the detail description of 20-node 

hexahedral element of ANCF in the work by Tian et al. [20].  
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Fig. 4.  Lubricated cylindrical joint described by the ACB method 

 

3. Mathematical models of gear mesh forces and lubrication forces 
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3.1 Mathematical models of contact forces of gear teeth 

Figure 5 depicts the potential meshing pattern of a pair of spur gears. The 

Line-Of-Action (LOA) connects points N1 and N2. The Off-Line-Of-Action (OLOA) 

is perpendicular to LOA. rbg and rbg denote the gear and pinion base radius, 

respectively, which can be determined from the number of teeth, the pressure angle α 

and the gear module. ωp and ωg are the averaged rotational speeds of pinion and gear, 

respectively. NA and NC are the normal contact forces along the LOA direction at the 

contact points A and C, while fA and fC represent the friction forces along the OLOA 

direction at the contact points A and C, respectively. 
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Fig. 5 Potential meshing pattern of a pair of spur gears 

 

At the beginning t=0 of a meshing cycle, a gear pair I (tooth pair rolling along 

line AC) enters into contact at point A. At the same instant, another pair II (tooth pair 

rolling along line CD) contacts at point C. As the pinion rolls, when the meshing point 

of pair I reaches point B at time t=tb, the pair II leaves the contact. At this instant, 

there is also a sudden reduction in the meshing stiffness of the system. Between points 

B and C, there is only a single tooth pair in contact. Thus, the points B and C are often 

called the Lowest Point of Single Tooth Contact (LPSTC) and the Highest Point of 

Single Tooth Contact (HPSTC), respectively [44]. When the meshing point of pair I 

passes through the pitch point P at instant t=tp, the relative sliding velocity at the 

meshing point reverses and results in a sharp reversal of friction force direction. At 

this instant, a sharply impulsive excitation is generated. When the meshing point of 
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pair I passes through point C at instant t=tc, pair I is re-defined as pair II and the 

incoming meshing tooth pair at meshing point A is re-defined as pair I. Thus, at the 

instant t=tc, the mesh cycle is finished. As shown in Fig. 5, the length of AC is defined 

as one based pitch pb. The total mesh cycle time tc, and key mesh events time tb and tp 

can be obtained as following 

               
2b

c
p bp p p

pt
r Z

= = π
ω ω

, AB
b c

b

Lt t
p

= , AP
p c

b

Lt t
p

= .               (1) 

where Zp is the number of gear teeth. LAB and LAP denote the length of line AB and line 

AP, respectively, and can be calculated as   

                          
2
b

AP
pL = ε

, ( 1)AB bL p= −ε ,                       (2)                

in which ε denotes the gear pair contact ratio, and can be determined by the design 

parameters of gear and pinion. 

 Due to the periodicity of the meshing events, the meshing time duration for 

single-tooth engagement can be evaluated as 

                            (2 )s ct t= −ε ,                             (3) 

Similarly, the time duration for double-tooth engagement can be determined as 

                            ( 1)d ct t= −ε .                             (4) 

In order to evaluate the normal contact forces, along the LOA direction, at the 

contact points, the mechanical model for a single-tooth engagement state is usually 

simplified as a classical spring-damper system as illustrated in Fig. 6 [25-27]. The 

coordinate system, shown in Fig. 6, is defined in the global coordinate system by 

using NCF. Each gear is represented by a rigid disk coupled by a time-varying mesh 

stiffness k(t), a mesh damping c(t) and a static transmission error e(t). Tp and Tg denote 

the driving torque and load torque, respectively. 
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Fig. 6 Schematic view of the normal contact force along LOA in a spur gear pair 

 

The mesh stiffness is periodic with the mesh frequency and numerous approaches 

have been employed to determine the mesh stiffness. The Finite Element Method 

(FEM) is one of the most popular employed techniques [49]. However, this approach 

tends to be computationally intensive, since very dense mesh grid is needed to achieve 

accurate results. In turn, analytical models are usually more efficient than FEM, and 

in some cases they may yield satisfactory tooth mesh stiffness results [50-55]. 

Recently, Chaari and his co-authors, based on previous works [50, 53, 56], proposed a 

new combined analytical model to evaluate the mesh stiffness [57-59]. Their studies 

indicated that the mesh stiffness results calculated by using their model are in a very 

good agreement with the results obtained via FEM.  

With the purpose to determine the mesh stiffness, the gear tooth deflections 

should be firstly described and evaluated. According to the works by Chaari et al. 

[57-59], for a loaded gear tooth, the total deflection along the loading direction is 

composed by 3 deflections namely, the bending deflection δb, the deflection δf of the 

fillet and foundation and the local contact and compression δh. As shown in Figure 7, 

for a gear tooth under the action of a meshing force F, the bending deflection of a 

tooth is determined by considering it as a nonuniform cantilever beam with an 

effective length Le, which is divided into n segments. According to the Weber’s tooth 

bending equation [50], the bending deflection δb can be expressed as 

      

2 2
2 2

1

1( ) ( ) ( ) ( )cos 2.4(1 ) tan3( ) ( )
( ) ( )

n i i i i

b i
i i i

l t l t e t e tF vt e t
E I t A t

α αδ
=

⎡ ⎤− +⎢ ⎥+ += +⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ,  (5) 
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where 
1

1 1 1( ) / 2
+

= +
i ii I II

 and 
1

1 1 1( ) / 2
+

= +
i ii A AA

. iI  denotes the area moment of 

inertia of the i-th tooth cross segment Si, Ai is the area of the i-th tooth cross section, v 

represents the Poisson’s ratio of the gear tooth material, α is the gear pressure angle, ei 

is the thickness of a segment and ei=Le/n. li is the distance between the load point and 

the i-th tooth cross segment. These parameters are represented in Fig. 7. Therefore, 

the bending stiffness of the tooth can be evaluated by 

( ) / ( )f bk t F tδ= .                      (6) 

 

Addendum circle
Base circle

Deddendum 
circle

F

uf
Le
li

SiSf

ei

α

  
Fig. 7. Modeling of a spur gear tooth as a nonuniform cantilever beam 

 

Furthermore, according to the work by Sainsot et al. [54], the deflection of the 

fillet and foundation δf yields 

( )
2

2
* * * * 2( ) ( )cos( ) 1 tanf f

f
f f

u t u tFt L M P Q
Eb S S

αδ α
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

,        (7) 

where b denotes the face width of a gear tooth, Sf  and  uf are the geometrical 

parameters of a gear. The coefficients L*, M*, P*, Q* can be approached by the 

polynomial functions, 

          2 2( , ) / / / ,  =1,2,3,4.i f i f i i f i f i iX h A Bh C h D Eh F iθ θ θ θ= + + + + + ,    (8) 

where X1= L*, X2= M*, X3= P * and X4= M*. The definitions of the gear geometrical 

parameters (h and fθ ) and the constants Ai , Bi, Ci, Di, Ei and Fi can be found in the 

work by Sainsot et al. [54]. 
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 The corresponding fillet-foundation stiffness satisfies 

                    ( )
( )f
f

Fk t
tδ

= .                         (9) 

Finally, the third deflection component, the local contact and compression 

deformation δc can be calculated by using a linearized Hertzian contact model with 

constant stiffness proposed by Yang and Sun [56], that is  

                                    =h
h

F
k

δ ,                            (10) 

where kh denotes the constant contact stiffness and yields 

                                      ( )24 1
=

−h
Ebk
v

π
,                       (11) 

in which v and E represent Possion’s ratio and the Young’s modulus of gear material, 

respectively. Thus, for a pair of teeth in contact the mesh stiffness k can be written as 

1 1 1 1 1( ) 1/
( ) ( ) ( ) ( )bp bg fp fg h

k t
k t k t k t k t k

⎛ ⎞
= + + + +⎜ ⎟⎜ ⎟⎝ ⎠

 ,             (12) 

where the symbols “p” and “g” denote the pinion and the gear, respectively. 
Based on Fig. 5, the relation between the mesh stiffness of tooth pair I and the 

mesh stiffness of tooth pair II at an instant can be expressed as    

     ( ) ( )I c IIk t t k t+ = .                      (13) 

The final time-varying mesh stiffness function can be expressed by 

          ( ) ( ) ( )I IIk t k t k t= + .                    (14) 

In Fig. 6 e(t) denotes the Static Transmission Error (STE), resulting from 

geometrical errors in the gear tooth profile and spacing. This error is a periodic 

function of the rigid-body rotation of the gears. The STE can be assumed to be 

sinusoidal function with tooth passing frequency [37, 60] as 

              ,                (15) 

where er is the amplitude of the STE. Chang [37] found that the transmission error can 

induce high frequency oscillations in a gear system and that the severe oscillations 

will be generated if large amplitude is adopted. It must be noted that in the present 
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study the influence of the static transmission on the mesh stiffness is not considered. 

Furthermore, the viscous mesh damping coefficient c can be calculated by [49, 

61] 

          ,                      (16) 

where ζ is the damping ratio. The equivalent mass meq is defined as 

                       2 2
p g

eq
pb g gb p

I I
m

r I r I
=

+
,                    (17) 

where Ip and Ig are the mass moments of inertia of pinion and gear, respectively. 

     Once the time-varying mesh stiffness function, viscous mesh damping 

coefficient and the static transmission error are obtained, with regards to Fig. 6, the 

magnitude of the instant normal contact force N of a gear tooth along the LOA 

direction can be calculated by  

( ) ( )[ ( ) ( )] ( )[ ( ) ( )]= − + −N t k t t e t c t t e tδ δ& & ,             (18) 

where δ is defined as the Dynamic Transmission Error (DTE) of the system, and 

given by  

= −bp p bg gr t r tδ ω ω .                      (19) 

Once the normal contact forces along LOA are in hand, the corresponding torques that 

should be imposed at the gear and pinion centers of mass can be easily evaluated. 

The sliding motion on the gear tooth surface causes frictional forces along the 

OLOA direction, as it is observed in Fig. 5. In general, researchers [39-41] have 

modeled the sliding friction phenomenon by using Coulomb’s law with a constant 

friction coefficient. According to Coulomb’s law of dry friction, the magnitude of 

friction force (f) is proportional to the normal contact force along the LOA direction 

as f(t)=µ|N(t)|. The frictional coefficient µ can be calculated by [44] 

          ,                (20) 

where “mod” is the modulus function, “sgn” is the sign function to consider the 

direction of the frictional force, and  µavg is a constant, while the parameter LAP is 

represented in Fig. 5. 
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In order to consider the EHD lubrication action in a gear pair, by using a multiple 

linear regression method, Xu et al. [42, 43] proposed an EHD-based approach to 

evaluate the coefficient of friction µEHD, as follows 

          ,   (21) 

where SR denotes the ratio of sliding velocity to lubricant entrainment velocity, Ph is 

the maximal Hertzian pressure, Ve represents the lubricant entrainment velocity, v0 is 

the absolute viscosity, S is the Root-Mean-Square (RMS) composite surface 

roughness expressed in µm, R is the effective radius of curvature at contact point, and 

bi (i=1-9) are 9 empirical constant coefficients. The following empirical coefficients 

suggested by Xu [43] for the above expressions are adopted in this study, namely 

b1=-8.916465, b2 =1.03303, b3=1.036077, b4=-0.354068, b5=2.812084, b6=-0.100601, 

b7=0.752755, b8=-0.390958 and b9=0.620305. Based on the simulation parameters in 

the work by Xu et al. [62], the friction coefficients can be determined by using the 

curves plotted in Fig. 8. It can be observed that with an increase of the lubricant 

entrainment velocity, the magnitudes of the friction coefficient will gradually 

decrease for the same SR value. The same results have also been presented in the 

work by Xu et al. [42, 62]. 

Once the friction forces are determined, the corresponding frictional torques 

imposed at the gear and pinion centers of mass can be easily obtained. In the present 

study, the influence of above two friction coefficient models on the dynamic 

responses of geared multibody mechanisms is analyzed.  

 
Fig. 8 Comparison of friction coefficients for R = 5 mm, Ph = 2 GPa, v0 = 10 cPs, Sr.m.s. = 0.07 

µm and various Ve values 
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3.2 Mathematical models of EHD lubrication forces in cylindrical joints 

For the geared rotor supported by EHD lubricated cylindrical joints, the general 

form of the lubricant Reynolds’ equation can be expressed as [12] 

             3 2 3 2 26 12p p h hh R h R R
t

τ ω η
ϕ ϕ ζ ζ ϕ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

,       (22) 

where p denotes the lubricant pressure, τ is the lubricant dynamic viscosity and R is 

the journal radius. In order to account for the EHD lubrication condition, the lubricant 

film thickness can be expressed as follows 

          ,                    (23) 

where c represents the radial clearance size of joint, δ denotes the elastic 

deformation of bearing, θ is the angular coordinate and (ξj, ηj) the coordinates of an 

arbitrary journal cross section center defined in the coordinate system ξ-η-ζ, as shown 

in Fig. 4. With the purpose to evaluate the lubricant pressure and the associated 

bearing deformation caused by the pressure, the lubricated cylindrical joint and the 

pressure field can be unfolded along with the circumferential direction (φ), as it is 

represented in Fig. 9  

 

0

(2π,0)

φ

ζ
(0,L)

Pressure  grid points of a 
finite difference method

Element nodes on bearing inner surface  

Fig. 9 EHD model of an unfolded cylindrical joint 

 

Based on the idea described above, the lubricant pressure field can be obtained 

by solving Eq. (22) via the finite difference method. The detail computation 

procedures have been clearly described in the work by Tian et al. [20]. Once the 

lubricant pressures at the grid points (shown in Fig. 9) of an adopted finite-difference 
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method are obtained, they can be then transformed into the corresponding generalized 

nodal forces for computing the elastic deformation at the corresponding nodes of the 

used 20-node hexahedral element of ANCF. 

 

4. Computational strategy 

In the present study the EHD lubricated geared mechanism is studied under the 

frame work of multibody system formalisms and based on the ACB method. The 

assembly of the finite elements of ANCF can be carried out in a similar way of classic 

finite element method [63]. The nodal coordinate e of a finite element of ANCF can 

be easily transformed into the generalized coordinate q of the multibody system. 

Therefore, the final equations of motions for a constrained geared mechanism can be 

expressed in a compact form as a set of Differential Algebraic Equations (DAE) with 

a constant mass matrix as following [64] 

               
( ) ( ), ,

( , )

T t
t

⎧ + + =⎪
⎨

=⎪⎩
qMq Φ λ F q Q q q

Φ q 0

&& &
,                 (24) 

where the first term of the first equation represents the inertia forces, and the second 

term is the generalized forces associated with the constraints. At this stage, it should 

be noted that based on the ACB method, the mass matrix M always remains constant 

in the numerical iteration process. F(q) is the elastic forces of flexible parts which can 

be derived and evaluated according to the theory of continuum mechanics [65, 66]. 

The term in right side of the first equation denotes the generalized external forces that 

act at the centers of the gear and pinion, including the components transformed from 

the normal contact forces N(t), the frictional forces f(t), the lubricant forces and the 

associated torques. The second equation in Eq. (24) represents the kinetic constraint 

conditions mathematically described by a set of algebraic equations.  

In this study, the iterative scheme for the generalized-alpha method as proposed 

by Arnold and Brüls [67] is adopted to reach an optimal combination of accuracy at 

low-frequency and numerical damping at high-frequency. This approach has exhibited 

good applicability to tough problems in the works by Tian et al. [7, 20] and by Liu et 
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al. [11] to study the dynamics of flexible multibody system with clearance joints. 

More importantly, by embedding the sparse matrix storage skills and OpenMP 

parallel technique into the iteration process, this computation strategy can also be 

utilized to simulate very complicated flexible multibody systems. The readers can also 

gain an insight into the efficient parallel computation strategy and interesting 

applications in the works by Liu et al. [66, 68]. 

 

5. Numerical examples 

5.1 Parametric study of a rigid spur gear pair  

With the intent to validate the mathematic models described above, the dynamic 

analysis of a classical spur gear pair is carried out in this section. The values of the 

main parameters utilized to numerically characterize the geared multibody model are 

extracted from the literature for a similar case [40, 41, 49], which allows to compare 

and validate the developed approaches. The planar gear and pinion are described by 

NCF approach. The mass centers of gear and pinion are fixed to the ground. Different 

initial pinion rotation speed ωp are considered.  

Based on the gear pair parameters listed in Table 1, the time-varying mesh 

stiffness is evaluated by using the Chaari’s expressions [57-59]. According to the 

work by He et al. [49], the maximal mesh stiffness of the gear pair is set to be 

kmax=7.20e8 N/m, the mean stiffness is assumed to be kmean=5.568e8 N/m. The 

maximal mesh stiffness kmax, the mean mesh stiffness kmean and the minimal mesh 

stiffness kmin should meet the relation [40]: 

                   1 2meank k kε ε= − + −max min( ) ( ) .                  (25) 

Thus, from Eq. (25) the minimal mesh stiffness can be obtained, kmin≈4.32e8   

N/m .It can be further found the relation kmax/ kmin ≈5/3≈1.667. Furthermore, by using 

these additional stiffness parameters, the time-varying mesh stiffness can also be 

written in terms of Fourier series [28, 41]. 
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Table 1 Parameters utilized to model the spur gear-pinion pair 

Parameter Pinion Gear 

Number of teeth (Zp, Zg) 25 31 

Pressure angle (α) 25° 

Modulus 3.175e-3 m 

Center distance 8.89e-2 m 

Tooth face width (b) 3.175e-2 m 

Contact ratio (ε) 1.433 

Moment of inertia (Ip, Ig) 0.0009579 kgm2 0.00226 kgm2 

Meshing damping ratio (ζ) 0.1 

Driving torque Tp 226 Nm 

Young’s modulus 2.069e11 Pa 

Poisson’s ratio (v) 0.3 

Mass (mp, mg) 1.1766 kg 1.8209 kg 

Load torque (Tg) 226 Nm 

Gear shaft radius 0.0085 m 0.0108 m 

Addendum radius  0.0428 m 0.0523 m 

Dedendum radius  0.0357 m 0.0452 m 

Dimensionless tool tip radius 0.2 

 

Figure 10 shows the time-varying mesh stiffness of the gear pair evaluated by 

using the Chaari’s approach and Fourier series. In Fig. 10a, td and ts denote the mesh 

time for a single-tooth engagement and a double-tooth engagement, respectively. The 

total mesh cycle time yields tc= td + ts. Fig. 10b allows for the comparison between the 

Chaari’s stiffness model and the stiffness model described by Fourier series with 

different orders. For the convenience of further discussion, let k1 be the Chaari’s 

stiffness model, k2 and k3 be the stiffness model expressed by 5th and 15th Fourier 

series, respectively. By analyzing Fig. 10b, it can be clearly observed that k3 case 

tends to exhibit a stiffness curve of almost square waves. Based on the gear pair 

parameters listed in Table 1, the key meshing instant time in a mesh cycle described 

in Section 3.1 can be evaluated as tc=1.000 s, td=0.433 s, ts=0.567 s and tp=0.716 s. 
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(a) Chaari’s time-varying mesh stiffness: k1 (b) Mesh stiffness described by Fourier series 

Fig. 10 Two time-varying mesh stiffness models: Chaari’s model and Fourier series model 

 

Figure 11 presents the Dynamic Transmission Error (DTE) outcomes for a 

low-speed gear system with an initial pinion rotation speed ωp=2.4 rpm. From Fig. 11 

indicates that there are sharp DTE change at instant td=0.433 s for all analyzed cases. 

For Figs. 11a, 11c, 11d and 11f, which correspond to a time-varying stiffness, this 

phenomenon can be explained by a sharp mesh stiffness change at the instant when 

the mesh state transition happens from the single-tooth engagement to the 

double-tooth engagement (see Fig. 10). While for the results relative to a constant 

meshing stiffness, kmean, this phenomenon is caused by the sharp changes of the 

frictional force magnitude, as shown in Figs. 11b and 11e. In addition, from Fig. 11b, 

a similar sharply impulsive excitation can also be clearly observed at instant tp=0.716 

s. This effect is caused by a sharp reversal of friction force direction at instant t=tp. By 

analyzing Figs. 11a and 11c, it can be concluded that the frictional force leads to 

relative larger DTE variations. This phenomenon was recognized in the work by He et 

al. [49]. Comparing the results shown in Figs. 11c and 11d, it can be found that if the 

EHD lubrication condition of gear teeth is considered and the frictional coefficient 

model µEHD in Eq. (20) is utilized, the DTE at instant tp shows more stable and smooth 

results than those based on the frictional coefficient with constant magnitude with Eq. 

(19) and µavg=0.1. Thus, it can be concluded that for the low-speed geared 

transmission system, the frictional force has an influence on the dynamic responses in 

a significant manner.  
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From Figs. 11a-11d, it can be observed that the DTE exhibits lower values in the 

double-tooth engagement period than those in the single-tooth engagement period. 

Furthermore, the DTE results obtained by using Chaari’s stiffness model k1 are 

different from those calculated when the Fourier series stiffness models k2 and k3 are 

considered, especially at instants td and tp, as shown Figs. 11a, 11c and 11d. Finally, 

Fig. 11e and 11f depict that the amplitudes of the Static Transmission Error (STE) 

affect the DTE results in a significant manner. In general, larger STE amplitude 

induces larger DTE oscillations.  

 

  
(a) Time-varying stiffness and damping (b) Constant stiffness (kmean), damping and 

frictional coefficient (µavg=0.1) 

  

(c) Time-varying stiffness and damping, 
constant frictional coefficient (µavg=0.1) 

(d) Time-varying stiffness, damping and 
frictional coefficient (µEHD) 
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(e) Constant stiffness (kmean), damping and 

frictional coefficient (µavg=0.1), different STE 
amplitudes (er) 

(f) Time-varying stiffness k1, damping and 
frictional coefficient (µEHD), different STE 

amplitudes (er) 

Fig. 11 Comparison of DTE results for a low-speed gear system with ωp=2.4 rpm 

 

Figure 12 shows the Dynamic Transmission Error (DTE) outcomes for a 

high-speed gear system at an initial pinion rotation speed ωp=1500 rpm. The key 

meshing instant time within a period is tc=1.6 ms, td=0.6928 ms, ts=0.9072 ms, and 

tp=1.146 ms. From Fig. 12, sharp DTE changes at instant td=0.6928 ms in a period for 

all different cases are clearly visible and can be explained in a similar manner as in 

the case of low-speed gear system. Comparing the corresponding results for the 

low-speed gear system, it can be concluded that the influence of the frictional forces 

on the DTE results is not clear, as it is illustrated in Figs. 12b, 12c and 12d. However, 

the differences between the results obtained from the time-varying stiffness models 

and the outcomes from the use of constant mesh stiffness are important. Different 

from the corresponding results for a low-speed gear system discussed above, the 

influence of the different time-varying stiffness models on the DTE results of a 

high-speed gear system is very slight. From Figs. 12e and 12f, it can be observed that 

the Static Transmission Error (STE) amplitude also affects the DTE results 

considerably. Some of the results plotted in Fig. 12a, 12b and 12f can also be 

corroborated by the data in Vaishya and Singh [40] for a similar system.  
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(a) Time-varying stiffness and damping. (b) Constant stiffness (kmean), damping and 

frictional coefficient (µavg=0.1) 

  
(c) Time-varying stiffness and damping, 
constant frictional coefficient (µavg=0.1) 

(d) Time-varying stiffness, damping and 
frictional coefficient (µEHD) 

  
(e) Constant stiffness (kmean), damping, frictional 

coefficient (µavg=0.1) and different static 
transmission error amplitudes (er) 

(f) Time-varying stiffness k1, damping and 
frictional coefficient (µEHD), different static 

transmission error amplitudes (er) 

Fig. 12 Comparison of DTE results for a high-speed gear system with ωp=1500 rpm 

 
5.2 Coupling dynamics of a quick-return mechanism driven by a geared rotor  

In this section, the coupling dynamics of a quick-return mechanism driven by a 

geared rotor with two flexible shafts is investigated. The gear centers coincide with 

the mid points of the two parallel flexible shafts shown in Fig. 13. The two flexible 

shafts are supported by 4 bearings of the same kind, which are labeled as I-IV and 
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modeled as 4 lubricated cylindrical joints. The pinion and the gear have the same 

geometrical and material properties. Table 2 presents the system parameters. This 

example has been studied by Chang [37], in which, however, the gear mesh friction 

forces and the lubrication conditions were taken into account. In the present study, the 

influences of the gear mesh stiffness models, friction models, amplitude of STE and 

EHD lubrication conditions on the system dynamic responses are analyzed. In a 

similar way to Chang [37], the system with the geared rotor is called the coupled 

system, while the system without the geared rotor (only a perfect quick-return 

mechanism) is named as the uncoupled system. In the coupled system when the 

lubrication conditions of the corresponding 4 cylindrical joints are not considered, the 

4 bearings supporting the flexible shafts are modeled as spring-damper elements. The 

spring stiffness coefficient (kb) and damping coefficient (cb) in each direction are 

assumed to be 106 N/m and 3000 Ns/m, respectively. The whole system is modeled by 

using the ACB method, as described in Section 2. The origin of the global coordinate 

system is located at the point O, which coincides with the mass center of the pinion 

(-90°). The rigid crank is initially aligned with the positive direction of Z-axis. From 

Fig. 13, it can be observed that there is a sliding joint connecting the rigid crank and 

the flexible rod. For the purpose of modeling the sliding joint based on ANCF, the 

approach proposed by Seo et al. [69] is adopted.  
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Fig. 13 Quick-return mechanism driven by a geared rotor supported by 4 cylindrical joints 
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Table 2 Simulation parameters of the quick-return mechanism 

Parameter Value 

Number of gear teeth  Zp= Zg=28 

Pressure angle of gear pair α=20° 

Modulus 3.383e-3 m 

Radius of base circle  rbp=rbg= 44.5 mm 

Gear moment of inertia  Ip= Ig=0.0018 kgm2 

Gear and pinion mass 1.84 kg 

Young’s modulus of gear and pinion material 20.7 GPa 

Addendum radius 50.7 mm 

Dedendum radius 43.1 mm 

Dimensionless tool tip radius 0.2 

Meshing damping ratio ζ=0.1 

Rotating speed 100 rad/s 

Cross-radius of flexible shafts  37 mm 

Young’s modulus of shaft material 70 GPa 

Flexible shaft length  lz=268 mm 

Cross-radius of flexible rod d=50 mm 

Material density of flexible rod ρ=3641.5 kg/m3 

Cylindrical joint bearing width  lb=14 mm 

Cylindrical joint bearing thickness 10 mm 

Rigid crank length  lc=0.0059997 m 

Length of flexible rod l=1 m 

Distance between bearing III end surface to point B  ls=23 mm 

Vertical distance between points B and E lg=0.59997 m 

Poisson’s ratio of all materials 0.3 

Density of other parts ρ=7800 kg/m3 

Lubricant dynamic viscosity τ=0.04 Pas 

 

Figure 14 presents the deflection results of flexible rod tip for the systems with 4 

un-lubricated cylindrical joints and different gear pair contact models. For the results 

in Figs. 14b and 14e, the constant mesh stiffness is set as k=1.0e8 N/m. For the results 

in Fig. 14c, the mesh stiffness model of the Fourier series, the maximal and minimal 

values of the mesh stiffness coefficient are set as kmax=1.20e8 N/m and kmin =0.72e8 

N/m. By analyzing Fig. 14a, it can be observed that the rod tip deflections are much 

smaller for the uncouple system than those for the coupled system, as shown in Figs. 

14b-14f. Thus, it can be concluded that the geared rotor plays an important role in the 

tip deflection. Moreover, from the results shown in Figs. 14b-14d, it can be observed 
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that the influence of the gear mesh stiffness model and the sliding friction force model 

of gear mesh on the rod tip deflections is not significant. From the analysis of the 

results in Figs. 14e and 14f, the Static Transmission Error (STE) amplitude (er) affects 

the rod tip deflection in a significant manner. The rod tip deflection increases with an 

increase of the STE amplitude. By analyzing Figs.14e and 14f, it can be concluded 

that the rod tip deflections are slightly larger for the systems with the forces of sliding 

friction than those for the corresponding systems without the forces of sliding friction. 

It can be said in general that the outcomes reported here are corroborated by the 

published literature [37]. 

 

  
 

(a) Uncoupled system 
(b) Coupled systems: constant mesh stiffness 

and different frictional coefficient models  

  
(c) Coupled systems: Fourier series mesh 
stiffness model and different frictional 
coefficient models 

(d) Coupled systems: Chaari’s mesh stiffness 
model and different frictional coefficient 
models 
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(e) Coupled systems: constant mesh stiffness 
model and constant frictional coefficient 
models, different static transmission error 
amplitudes (er) 

(f) Coupled systems: Chaari’s mesh stiffness 
model, time-varying frictional coefficient 
(µEHD) and different static transmission error 
amplitudes (er) 

Fig. 14 Influence of the gear mesh models on the rod tip deflection 
 (un-lubricated cylindrical joints)  

 

Figure 15 shows the influence of the gear pair contact models on the rod tip 

motion in Y-direction, where k represents the constant mesh stiffness model, k1 and k2 

denote the mesh stiffness model described by using Fourier series and Chaari’s 

stiffness model, respectively. Again, for this example, the difference of the mesh 

stiffness models lead to slight difference of the tip rod motions only. In contracts, Fig. 

15d shows a significant influence of the STE amplitudes and frictional forces on the 

rod tip velocity. 

 

  
(a) Displacement results (b) Velocity results  



	   29	  

  
(c) Acceleration results  (d) Influence of the STE amplitudes and 

frictional forces on rod tip velocity 
(Chaari’s mesh stiffness model) 

Fig. 15 The influence of the gear mesh models on the rod tip motion 
 (un-lubricated cylindrical joints)  

 

Figure 16 presents the influence of the joint clearance size c and STE amplitude er 

on the rod tip deflection for the system with 4 HD lubricated cylindrical joints. For 

HD lubricated cylindrical joints, the bearings are assumed to be rigid and the coupling 

behaviors between the lubricant pressure p and the bearing deformation δ in Eq. (22) 

is not taken into consideration. From the analysis of Fig. 16a, it can be obseved 

that larger clearance size leads to the larger rod tip deflection. Comparing the 

results shown in Fig. 16a with those for the coupled system in Fig. 14, it can be 

found that the rod tip deflections for the HD lubricated systems are smaller than 

those for the coupled systems, in which the cylindirical jont bearings are just 

simpliy modeled as the spring-damper systems. It should be pointed out that is is not 

easy to determine the spring stiffness coefficient (kb) and the damping coefficient (cb) 

for the spring-damper model in practice. Thus, the introduction of the practical 

lubricant parameters and the HD or EHD lubrication conditions in the modeling 

process can lead to more accurate outcomes. From Fig. 16b, the influence of the STE 

amplitude on the rod tip deflection is clear. In addition, by comparing the results 

shown in Fig. 16b with those in Fig. 14e and 14f, it can be asserted that the rod tip 

deflections for the HD lubricated case are smaller than those for the coupled 

un-lubricated systems. It is also found that the larger amplitude of STE lead to more 

difficult simulation convergence because of the coupling effect between the large 

meshing forces and the lubrication forces. 
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(a) Effect of clearance size (b) Effect of amplitude of STE (c=0.2 mm)   

Fig. 16 Influence of the joint clearance size and STE amplitude on the rod tip deflection  
(HD lubricated cylindrical joints) 

 

In what follows, the influence of the EHD conditions on the dynamic responses 

of the geared mechanism is investigated. The approach to define the EHD lubricated 

cylindrical joints has been described in Section 2. The nodes of the outer surfaces 

of the 4 flexible bearings are fixed in the ground. Figure 17 shows influence of the 

joint clearance size c and lubrication conditions on the rod tip deflection, from 

which it can be observed that a larger clearance size leads to a larger rod tip 

deflection. The influence of the STE amplitude on the rod tip deflection for the EHD 

lubricated case is also significant, and the rod tip deflection curves are close to those 

in Fig.16b.  

 

  
(a)  c=0.1 mm  (b) c=0.2 mm  
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(c) c=0.3 mm 

Fig. 17 Influence of the joint clearance size c and lubrication conditions on the rod tip deflection 
 

Figure 18 shows influence of the lubrication conditions (HD and EHD) and the 

STE amplitudes on the rod tip kinematics. It can be observed that the velocity and 

acceleration results for HD or EHD lubricated systems exhibit larger oscillations than 

the results for uncoupled system. Moreover, by a careful analysis to Fig.18c, it can be 

concluded that the acceleration results for the EHD lubricated system changes more 

sharply than those for the HD lubricated systems. This phenomenon is caused by the 

bearing deformations. Moreover, the larger STE amplitudes will cause significant 

changes in the velocity outcomes, as shown in Fig.18d.  
 

  
(a) Displacement results (b) Velocity results  
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(c) Acceleration results  (d) Influence of the STE amplitudes on rod 

tip velocity (EHD) 
Fig. 18 Influence of the lubrication conditions (HD and EHD) on the rod tip movements 

(c=0.2 mm, E=1.3e11 Pa) 
 

Figure 19 presents the trajectories of surface centers A, D, C and F of shaft end 

in the clearance sapce. With intent to visualize the results more clearly and with the 

intent to keep the figures clear and readable, only the data relative to the period when 

the crank angle change from -90° to 270° are showed here. It can be observed that 

the directions of the trajectories of surface centers A and D are near to the direction 

of gear Line-Of-Action (LOA). The reason for this phenomenon is that the directions 

of the trajectories of the centers A and D are mainly determined by the gear mesh 

force along the direction of gear LOA. The trajectories of shaft end surface centers 

C and F are much different from those of the centers A and D, becasue the 

trajectories of the centers C and F will not only be affected by the mesh force but 

also by the dynamic behaviors of the rigid crank and flexible rod. As the center F 

are closer to the the rigid crank and flexible rod, the direction of its trajectory is 

farer away from the direction of LOA than the direction of center C. 
 



	   33	  

  

  
 

Fig. 19. Trajectories of surface centers A, D, C and F of the shaft end in the clearance space 
(E=1.3e11 Pa , c=0.2 mm, er=1.8e-4 m, crank angle from-90° to 270°) 

 

Finally, Fig. 20 shows the lubricant pressure contours and distributions around 

the journal and the flexible bearing, von Mises stress contours of a EHD lubricated 

system when its crank angle is equal to be 90°. From Fig. 20a, it can be observed 

that the directions of the lubrication pressure for the cylindrical joints I and II are 

close to the direction of gear pair LOA, which is in line with the directions of the 

centers A and D (shown in Fig. 19). By comparing Fig. 20a with Fig. 20b, the 

magnititude of the lubricant pressure and its distribution are consistent with the 

magnititude of the von Mises stress and its distribution of the flexible bearing, 

respectively. 
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(a) Lubricant pressure distribution and 

contour 
(b) von Mises stress contour of  

flexible bearing 
Fig. 20. Scaled view of lubricant pressure contours and spatial distributions of von Mises 

stress contours of 4 flexible bearings (E=1.3e11 Pa, c=0.2 mm, er=1.8e-4 m, crank angle=90°) 
 

6. Conclusions 

The coupling dynamics of geared multibody system supported by 

Elastohydrodynamic (EHD) lubricated cylindrical joints is investigated throughout 

this work. The dynamic model is established by using the Absolute-Coordinate-Based 

(ACB) method that combines the Natural Coordinate Formulation (NCF) describing 

rigid bodies (gears) and the Absolute Nodal Coordinate Formulation (ANCF) 

describing flexible bodies (rotating shafts, flexible bearing). Firstly, the difference of 

a constant mesh stiffness model and two time-varying mesh stiffness models (the 

Chaari’s model and the model described by the Fourier series) are noticed via a 

comparatively study of a classic geared pair at low or high rotating speed. In addition, 

the influence of the forces of teeth sliding friction on the dynamic responses are 

investigated by using the Coulomb’s friction models with a constant and a 

time-varying coefficient of friction under EHD lubrication condition of gear teeth. It 

is found that when the EHD lubrication condition is introduced to the gear teeth, the 

system exhibits more stable and smooth responses. Finally, the coupling dynamics of 

a quick-return mechanism driven by a geared rotor with two flexible shafts supported 

by 4 EHD lubricated cylindrical joints is studied. The influence of the lubrication 

conditions (HD and EHD), the gear mesh force models and the clearance size on the 

system responses are also analyzed. Several coupling dynamic behaviors of the 
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system are observed, such as the coupling between the trajectories of shaft end surface 

centers, the gear mesh forces, the lubricant pressure and the von Mises stress of 

flexible bearing. The methodology proposed in this work can be extended to studying 

the coupling dynamics of many other geared multibody systems, such as the large 

hoop truss satellite antenna jointed by using bevel gears. 
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