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Abstract

Gear transmissions remain as one of the most complex mechanical sys-
tems from the point of view of noise and vibration behavior. Research on
gear modeling leading to the obtaining of models capable of accurately re-
produce the dynamic behavior of real gear transmissions has spread out the
last decades. Most of these models, although useful for design stages, often
include simplifications that impede their application for condition monitoring
purposes. Trying to filling this gap, the model presented in this paper al-
lows to simulate gear transmission dynamics including most of these features
usually neglected by the state of the art models.

This work presents a model capable of considering simultaneously the
internal excitations due to the variable meshing stiffness (including the cou-
pling among successive tooth pairs in contact, the non-linearity linked with
the contacts between surfaces and the dissipative effects), and those excita-
tions consequence of the bearing variable compliance (including clearances or
pre-loads). The model can also simulate gear dynamics in a realistic torque
dependent scenario.

The proposed model combines a hybrid formulation for calculation of
meshing forces with a non-linear variable compliance approach for bearings.
Meshing forces are obtained by means of a double approach which combines
numerical and analytical aspects. The methodology used provides a detailed
description of the meshing forces, allowing their calculation even when gear
center distance is modified due to shaft and bearing flexibilities, which are
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unavoidable in real transmissions. On the other hand, forces at bearing level
were obtained considering a variable number of supporting rolling elements,
depending on the applied load and clearances. Both formulations have been
developed and applied to the simulation of the vibration of a sample trans-
mission, focusing the attention on the transmitted load, friction meshing
forces and bearing preloads.

Keywords: Gear, Model, Transmission Error, Load Ratio, Meshing
Stiffness, Finite Element, Bearings, Condition Monitoring

Nomenclature

Fi Force acting on contact point i

Km Meshing stiffness

Zi Teeth number of wheel i

χi curvature radius of the contacting surface

δ Geometric overlap

η Dynamic Viscosity

λi,k Deformation of the contact point i when a unitary force is applied at
the contact point k

ad Addendum

f Friction coefficient

h Frontier depth for the superposition of problems

m Module

n Number of actual contact points

BPF Ball Pass Frequency

DOF Degrees of Freedom

DTE Dynamic Transmission error
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FE Finite Element

GMF Gear Mesh Frequency

LOA Line Of Action

OLOA Out of the Line Of Action

c Bearing Clearance

1. Introduction1

Gear transmissions remain as one of the most complex mechanical systems2

from the point of view of noise and vibration behavior. They are applied in3

several ways i.e. for speed changes, for torque gain, torque reduction or power4

split among others. The future foresees higher torque levels with a global5

increment in the power density, a reduction in energy consumption, better6

endurance and lower noise and vibration levels [1]. To cover these demands7

the industry should carry out a great effort on understanding the dynamics8

of these kinds of systems. In order to achieve this task, better theoretical9

models should be developed, which might be able to accurately reproduce10

the dynamic behavior of real gear transmissions.11

Moreover, gear transmissions are critical components on a wide range of12

machinery i.e. helicopter transmissions, wind turbines and aerospace appli-13

cations having a great impact on the final success of the whole system. As14

an example, in the case of wind turbines, gearboxes represent an important15

percentage of the final cost of the machinery but they are also a compo-16

nent especially susceptible to develop expensive failures, which have a great17

impact on the final profit in operation [2].18

Therefore, besides its utility on the improvement of the gear transmis-19

sions design stage, the development of specific models capable to reproduce20

the dynamic behavior in operation, arise as a very interesting goal to their21

application in condition monitoring applications. This possibility has been22

suggested by some researchers such as Bartelmus [3], who proposed the use23

of a model of gear transmissions as an aid for diagnostics or Ho and Randall24

[4] who applied these kinds of tools for the case of bearings. Following this25

approach, during last years several authors have addressed the simulation of26

different kinds of faults in gear transmissions, such as gear cracks [5],[6],[7],27

tooth breakage [8], surface pitting and/or spalling [9], [10], among others.28
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However, most of these models tend to present a lot of simplifications,29

without a detailed description of the most critical aspect involved in gear30

dynamics, which is the role played by the parametric excitation due to the31

variable number of meshing tooth pairs [11], as well as its inherent non-32

linearity.33

On top of the variable meshing stiffness, gear transmissions are usually34

supported by rolling bearings, which undergo the same kinds of dynamic35

phenomena described for gears: a parametric excitation due to the variable36

number of rolling elements transmitting the load to the support. This varia-37

tion in the number of rolling elements effectively supporting the load causes38

a variable stiffness in the bearings, and will result in the appearance of vi-39

brations. These vibrations are characterized by multiples of the so-called40

Ball Pass Frequency (BPF) which is obtained as the product of the number41

of rolling elements by the cage rotation frequency. The consideration of the42

variable stiffness due to the angular position of the cage, and therefore of43

different number of contacting elements, was proposed by Gupta [12]. Later,44

Fukata et al. [13] developed a two-dimensional model including the effects45

of clearances, contact stiffness and parametric excitation. Nevertheless, the46

inclusion of bearing flexibility in gear dynamic models has been simply ap-47

proached by considering bearings as time invariant flexible supports [14].48

On the other hand, a reduced number of researchers have proposed ad-49

vanced models combining gear and roller bearing dynamics, including the50

parametric excitation due to both elements in order to analyze the inter-51

action between these elements and its consequences on the dynamics and52

vibratory behavior. An interesting example is the model proposed by Lah-53

mar and Velex [15], who combines the gear model developed in [16] with54

a non-linear formulation for ball and roller bearings including the variable55

compliance of these elements. This formulation was linearized carrying out56

static and dynamic analysis in order to compare the results obtained with the57

original non-linear approach. Moreover, Sawalhi and Randall [17] developed58

a model for spur gear transmissions, focusing their attention on the inclusion59

of ball bearings with several types of faults.60

Nevertheless, real transmissions present some features usually neglected61

in the mentioned models, such as the coupling among successive tooth pairs62

in contact and the non-linearity linked with the contacts between surfaces.63

These phenomena have implications in the load sharing between teeth pairs,64

and as a consequence in the actual contact ratio, due to the fact that the65

deformation values will be greater than the estimated ones from purely kine-66

4



matic approaches, as those applied in previous models. Furthermore, shafts67

and bearings interact with gears, increasing the complexity of transmission68

dynamics. Depending on the level of the transmitted torque, those elements69

suffer deflections and hence the gear center distance becomes greater. Thus,70

the tooth engagement process is modified and consequently the meshing stiff-71

ness provides a different dynamic response for different torque levels. As a72

consequence, transmissions working under different load conditions result in73

a problem for conventional condition monitoring applications, as the alarm74

levels and the system set up must consider several working conditions.75

Aiming to cover this gap, the authors developed an advanced model, com-76

bining rolling bearings and gears, for quasi-static analysis [18] showing the77

consequences in gear centre orbits, transmission error and meshing stiffness78

when several levels of transmitted torques are applied. The computational79

features of the procedure for calculation of meshing forces based on a hybrid80

approach combining numerical and analytical tools, were presented in [19]81

and subsequently applied on the quasi-static simulation of tooth defects like82

pitting and tooth cracks [20]. Afterwards, in [21] the model was extended83

to dynamic analysis and applied to simulate the impact of profile deviations,84

while in [22] index and run out errors were considered. This paper describes85

the enhancement of the model towards on condition monitoring applications86

by showing the interaction between the non-linear behavior of bearing and87

gears, assessing the consequences of meshing friction, bearing clearances and88

the level of the applied torque.89

2. Model Description and Dynamic Equations90

Figure 1 illustrates a schema of the sample transmission used, consisting91

of a couple of spur gears mounted on elastic shafts, which are supported by92

two ball bearings each. Each wheel is modeled as a rigid disk with lumped93

inertia at the center, under the assumption of plane motion, considering two94

translational Degrees Of Freedom (DOF) and one rotational. Both gears are95

mounted on flexible shafts allowing in plane deflection and torsion. Further-96

more, each shaft is supported by two bearings, whose inertia is also lumped97

at their center adding three more DOF for each one. The connection between98

components is done by a linear translational/rotational spring with a viscous99

damper or by a non-linear function (represented in Figure 1 by springs-100

dampers and double sense arrows respectively) related with the behavior of101

gears and bearings. Normal surface meshing contact forces are obtained by102
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a hybrid approach, combining numerical and analytical methods. Moreover,103

dissipative phenomena, as friction and oil damping, are added to improve104

the capabilities of the model, as described in the next section.105

Figure 1: Schema of the gear transmission

Bearing forces are included by considering the angular variable compli-
ance due to the change in the number of rolling elements supporting the
load. Meanwhile, bearing damping is added as an equivalent translational
viscous damping, which has the same value for any direction on the plane
of movement (torsional damping is not considered). In order to define the
transmitted torque by the system, the input rotational speed and the output
torque must be defined. This agrees with the assumption of a constant load
at the output and a speed controller on the drive at the input. To set up this
approach, an additional rotational inertia is included at the output, where
a torque is applied to load the transmission. Taking a reference frame, with
the z-axis oriented along the shaft center line and the y-axis defined by the
line between gear centers, x and y are the translational degrees of freedom
along the x and y-axis while θ is the rotational degree of freedom around
the z-axis. Each degree of freedom is identified with a subscript with the
form iEj, where i denotes the shaft number of the element of interest, E
is a subscript to distinguish between bearings (subscript b), gears (subscript
G) and rotational inertia (subscript J), and j denotes the element number
among those located in the same shaft. As an example, xibj means the dis-
placement along the x-axis of bearing j belonging to shaft i. Moreover, the
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degrees of freedom associated with bearings and gears are grouped in vectors
qibj = {xibj , yibj, θibj}

T and qiGj = {xiGj , yiGj, θiGj}
T . Then, the mass, damp-

ing and stiffness matrices for the whole system (shafts, gears and bearings)
are assembled into the dynamic matrix equation, arriving at a system with
19 DOF (the input rotation is known) which expressed in matrix form gives
rise to the following expression:

Mq̈+Cq̇+Kq+ fb(q) + fG(q, q̇) = fExt(t);

q = {q1b1,q1G1,q1b2,q2b1,q2G1,q2b2, θOut}
T ;

(1)

Non-linear terms due to bearings and gears are included in vectors fb106

and fG, while matrices M, C and K are constant coefficient matrices. The107

detailed dynamic equations are presented in Annex A.108

3. Meshing Forces109

For this purpose, in this work a hybrid procedure has been applied by110

combining numerical and analytical formulations [23], [24] and [25]. This111

procedure divides the gear contact into two regions: the surroundings of the112

contact and the rest of the gear body. The deflection in the region close113

to the contact is defined by an analytical formulation, while the deflection114

away from the contact is obtained by a numerical FE model. The main115

advantage of this approach is that it is not necessary to develop a new FE116

model with refined mesh for each contact position. Furthermore, its use117

reduces the computational effort, as the FE model analysis becomes linear,118

whilst the non-linear problem related to the surface contact is simplified by119

the analytical formulation.120

Following this approach, assuming Fn forces on n contacting points lo-121

cated at successive teeth couples, the total displacement of the i− th contact122

point (uT i) is obtained by the addition of the non-linear terms due to the123

local deflection of each contacting surface (uLi) and due to the global de-124

flection, which is expressed as a linear combination of all the contact forces125

involved in the meshing position analyzed.126

Thus, the meshing forces Fi are found solving the non-linear system shown127

in Eq.(2), attending to two conditions. The first is the condition of compat-128

ibility, which states that the sum of deflections of conjugated teeth (uT i)129

must be equal to the interference value due to rigid-body displacements of130

the wheels (δi). The second is the complementary condition, which assures131
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that negative loads are not considered at the points where real contact does132

not take place.133
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Where superscript w and p stands for wheel and pinion, and λi,k represents134

the flexibility influence coefficients. Regarding local deformations, the dis-135

placement between a point on the surface of a solid and a point located at a136

depth h is obtained according to the expression derived by Weber-Banashek137

[25] for bi-dimensional plane strain problems. On the other hand, the flex-138

ibility influence coefficients (λi,k) represent the displacement of the contact139

point i when a unitary force is applied at point k and are obtained from a140

linear FE analysis.141

Therefore, this method provides the meshing forces Fi for any particular142

position of the gears and torque load, considering translational motion due to143

flexibility of bearings and shafts and as a consequence changes in the center144

distance, pressure angle and contact ratio. The procedure summarized in145

this section is described in more detail in [19], where it is also presented the146

validation of the meshing stiffness values by means of comparison with the147

ISO norm. Also in [26] the model behavior is compared in terms of meshing148

stiffness with other published approaches obtaining good correspondence.149

From the experimental point of view, the presented model has also been put150

to test in [27], where the results are further confirmed.151

4. Gear meshing dissipative effects152

In order to enhance the original model increasing its features for accurate153

simulation of gear dynamics, meshing forces have been furthermore extended154

to include friction and damping effects. Regarding friction, He [28] concluded155

that different models with a variety of complexity levels provide very similar156
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results about the predicted motions in the Line Of Action (LOA). Hence,157

in this work it has been assumed a Coulomb model with constant friction158

coefficient, using a smothering function to avoid numerical problems due to159

the discontinuity on the friction force when the contact arrives to the pitch160

point, according to the following expression:161

(Ff )
P
i = −Fif tanh

(

|vPi(P/W )·ti|
v0

)

sgn(vPi(P/W ) · ti) · ti

(Ff )
W
i = − (Ff)

P
i

(3)

Where (Ff )
P
i and (Ff )

W
i are the friction force vectors at the i contact for162

pinion and wheel respectively, f is the friction coefficient, Fi is the contact163

force at the i contact, vPi(P/W ) is the relative velocity between the contacting164

points on pinion and wheel tooth surface, ti is a unitary vector which defines165

the common tangent to the contacting surfaces, and v0 is a threshold level166

to smooth the transition when the relative velocity is null.167

The inclusion of damping in gear dynamic models has not been addressed168

in a clear and homogeneous way through the literature, being difficult to find169

works that adequately explain this phenomenon which in fact involves several170

mechanisms. In the case of lumped models, most authors consider that the171

damping due to the gear meshing can be represented by a viscous model,172

defined by a equivalent damping coefficient C acting on the torsional degrees173

of freedom [29]. More recently, some authors have included in their models174

the effect of the lubricant surrounding the contacting surfaces [30]. Mucchi175

et al. [31] develop a more complex formulation, considering two damping176

sources at meshing contacts, one due to the hysteresis damping consequence177

of teeth flexion and Hertzian deflections and one other due to the oil squeeze178

effect.179

In this work, both hysteretic and oil squeeze contribution are considered,180

neglecting other sources such as oil churning. Following this assumption, the181

damping force FDi for the contact i was defined by the expression:182

(FD)
P
i = −CDi

(

vPi(P/W ) · ni

)

ni

(FD)
W
i =− (FD)

P
i

(4)

Where ni is the common normal to the pinion and wheel surfaces corre-
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sponding to the contact i, while the damping coefficient CD is derived from:

CD =







2ξ
√

K̄MeshMEq Fi > 0

12πηb
(

1
2max(δThreshold,δi)

χPχW

χP+χW

)3/2

Fi = 0
(5)

Thus, when the contact is active, the corresponding force Fi is not null and183

the hysteretic damping model defined by Eq.(3) is switched on. Otherwise,184

the profiles are not in contact and the formulation proposed by Koster [32]185

is applied. There, η is the dynamic viscosity, b is the gear width, δi is the186

gap between tooth profiles and χi (i = P,W ) is the curvature radius of the187

contacting surface i.188

5. Ball Bearing Contact Forces189

Bearings forces have been obtained by means of the approach proposed190

by Fukata et al. [13], based on the following assumptions:191

• Both inner and outer races are considered rigidly attached to the shaft192

and the frame respectively.193

• All elements of the bearing are rigid, so that the only possible defor-194

mation is related to contacts between rolling elements and inner and195

outer races.196

• These contacts allow the application of the Hertzian theory.197

• The average angular position of the rolling element is defined by the198

cage, whose angular location is obtained by considering pure rolling199

without slipping at the contacts with inner and outer races. Neverthe-200

less a random variation on the angular location of each rolling element201

can be considered.202

According to the last assumption, the cage angular position (θCage) can
be obtained from the angular position of inner (θIn) and outer (θOut) races
by:

θCage =
θIn
2

(

1−
d

D
cos(α)

)

+
θOut

2

(

1 +
d

D
cos(α)

)

(6)

Where D is the average value of the projected inner and outer diameters203

in the bearing transverse plane, d is the diameter of rolling element and α is204

the contact angle.205
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Figure 2: Rolling bearing parameters scheme

Usually, the outer race is stationary and Eq.(6) can be particularized
assuming a null value for θOut. Under this assumption, the angular position
of the rolling element i (θREi) is determined from:

θREi =
2π

Nb

(i− 1) +
θIn
2

(

1−
d

D
cos(α)

)

+ θ0 (7)

Here, Nb is the number of rolling elements and θ0 is the cage angular offset206

with respect to the reference position, which corresponds with a rolling ele-207

ment located on the positive horizontal axis (X) defined in Figure 2. Then,208

considering the cartesian reference system defined in Figure 2 and assuming209

that the outer race is fixed, the total radial overlap (δREi) between the ith210

rolling element, defined by its angular position (θREi), and the inner and211

outer tracks are a function of the coordinates (x, y), which defines the loca-212

tion of the inner race center and the bearing radial clearance c, according to213

the expression:214

δθREi
= x cos(θREi) + ysin(θREi)− c; i = 1, 2, ...Nb (8)

Then, contact forces are obtained from the hypothesis of Hertzian contact,
leading to a non-linear relationship between the resultant force on the rolling
element i and the total radial overlap (δθREi

). Imposing the condition of
complementarity, by means of the Heaviside function H(), so that there is
only contact in those cases in which the radial deformation is positive, the
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resultant force, projected in the horizontal (x) and vertical (y) direction, is
obtained by:

Fx = kRE

NB
∑

i=1

H(δθREi
)δpθREi

cos(θREi)

Fy = kRE

NB
∑

i=1

H(δθREi
)δpθREi

sin(θREi)

H(δθREi
)

{

1 δθREi
≥ 0

0 δθREi
< 0

(9)

Where kRE is the stiffness obtained by serial composition of Hertzian stiffness215

due to contact with inner and outer races and p is the non-linear exponent,216

which is 1.5 for balls and 1.1 for rollers. Details regarding the procedure for217

calculation of kRE can be found in Annex B.218

6. Numerical Simulations219

In the following, the model described in the previous sections has been220

applied to simulate the dynamic behaviour of a sample gear transmission221

defined by the parameters shown in Tables 1 to 3 . Table 1 lists the values222

corresponding to the gear parameters of the mathematical model described223

in the previous sections. Each gear is mounted in a shaft supported by a224

pair of 209 single-row radial deep-groove ball bearings with the geometrical225

dimensions presented in Table 2. Table 3 contains the information related to226

the shaft stiffness and damping.227

Table 1: Gear data
Parameter Value Parameter Value
Number of teeth 28 Rack tip rounding 0.25 m
Module (m) 3.175 [mm] Gear tip rounding 0.05 m
Elasticity Modulus 210 [GPa] Rack dedendum 1 m
Poisson’s ratio 0.3 Rack ad 1.25 m
Pressure angle 20 [degree] Oil dyn. viscos. 0.004[Pa s]
Gear face width 6.35 [mm] m1G1 = m2G1 0.79999 [kg]
Gear shaft radius 20 [mm] J1G1 = J2G1 4.0408 10−4 [Kg m2]

Although the proposed model allows for the simulation of transient condi-228

tions, in the examples presented in this paper only stationary conditions were229

considered, with the aim of isolate and better demonstrate the model capabil-230

ities. Particularly, all simulations have been done using a constant rotational231

speed of 1000 rpm at the input shaft, loaded with several stationary torques232

ranging from 10 to 100 Nm. Numerical integration of dynamic equations was233

approached using a SIMULINKr fixed step solver (ode3 Bogacki-Shampine)234
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Table 2: Bearing paramenters (209 single-row radial deep-groove ball bearing [33])
Parameter Value
Outer race diameter (Ro) 77.706 [mm]
Groove radius of outer-ring (ro) 6.6 [mm]
Rolling element diameter (d) 12.7 [mm]
Inner race diameter (Ri) 52.291 [mm]
Groove radius inner-ring (ri) 6.6 [mm]
Radial clearance (c) 0.015 [mm]
Bearing Mass; m1b1 = m2b2; (m1b2 = m2b1) 0.4901 (0.245) [kg]
Bearing Inertia; J1b1 = J2b2; (J1b2 = J2b1) 9.9 10−5 (4.9 10−5) [Kg m2]
Number of Rolling Elements (Nb) 9

Table 3: Dynamic properties of connecting shafts
Parameter Value
Output Inertia; J2J2 3.56 10−4 [Kg m2]
Coupling Stiff.; KT1J1b1 = KT2b2J2 4.0 105 [Nm/rad]
Coupling Damp.; CT1J1b1 = CT2b2J2 3.5761 [Nms/rad]
Bearing Damping; C1b1 = C1b2 = C2b1 = C2b2 334.27 [Ns/m]
Shaft flex. Stiff.; K1b1G1 = K1G1b2 = K2b1G1 = K2G1b2 6.24 108 [N/m]
Shaft Tor. Stiff.; KT1b1G1 = KT1G1b2 = KT2b1G1 = KT2G1b2 4.0 105[Nm/rad]
Shaft Flex. Damp.; C1b1G1 = C1G1b2 = C2b1G1 = C2G1b2 31.6 [Ns/m]
Shaft Tor. Damp.; CT1b1G1 = CT1G1b2 = CT2b1G1 = CT2G1b2 0 [Nms/rad]

with a sampling frequency of 75 kHz. In order to reduce the transient period,235

simulations were launched taking as initial conditions the position of gears236

and bearings derived from a previous quasi-static equilibrium problem which237

was obtained by neglecting velocity and acceleration terms in Eq.(1).238

The non-linear problem was solved numerically for a certain torque at the239

output and several angular positions for the driving gear up to complete the240

entire bearing cycle. The resulting orbits for bearings 1b1 and 2b1 centers241

corresponding to the example for output torques ranging from 10 to 100 Nm242

are presented in Figure 3, where the dashed line represents the corresponding243

value of the bearing clearance (c). In this figure it can be appreciated how244

the orbits are disposed along the LOA with a larger displacement Out of245

the Line Of Action (OLOA), even though friction was not considered in this246

analysis. This feature is due to the fact that bearing stiffness in the LOA247

is higher than the one in OLOA, as a consequence of the bearing clearance.248

Moreover, the amplitude of the displacement in OLOA is shorter for the249

extreme torque values, while intermediate torques (between 30 to 60 Nm)250

provide larger courses. This behavior is due to the non-linear nature of the251

bearing model, which provides a rising number of rolling elements supporting252

the load as the applied force is increased. Gear center orbits are similar to253

that shown for bearing b11, but shifted in the LOA due to the shaft deflection.254
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6.1. The effect of torque load255

As it was described in the previous sections, a great number of the mod-256

els for simulation of gear dynamics use a simple formulation for meshing257

forces commonly based on gear rigid body kinematics, neglecting the role258

of the transmitted torque in the analysis, with has important consequences259

on the transmission behavior. Although these approaches do not lead to260

very different dynamic behavior in the global sense (since the vibration rms261

level remains very similar), however the time record and therefore the corre-262

sponding frequency spectrum will be different, which has huge implications263

when on condition monitoring is the goal of the model. On the contrary,264

the procedure described in this paper avoids this drawback extending the265

model capabilities for multi-load simulations and providing more advanced266

capabilities (i.e. bearing variable compliance, friction, gear defects, lubricant267

damping, etc.) useful in the context of condition monitoring.268

With the aim of comparing and assessing the advantages of the proposed269

approach over conventional models, the quasi-static analysis was furthermore270

extended in order to determine the meshing stiffness along a cycle. With271

this objective, it was decided to pre-calculate the stiffness values for each272

of the considered potential contacts, exploiting the advantages of the origi-273
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nal procedure. Thus, once the orbits are known, their centroids (midpoint274

for the orbit described by each gear center was determined from the orbits275

in a bearing cycle) are calculated and a new quasi-static analysis is done,276

fixing the gear center position to said centroids. During this analysis, the277

contact forces and the profile geometrical interferences are obtained, defining278

the meshing stiffness for each potential contact along a meshing cycle as a279

function of the angular position of the driving gear. In this way, relevant280

information provided by the model was preserved while its overall structure281

remains unchanged.282

The resulting meshing stiffness values under several torque loads can be283

then stored to be used subsequently in dynamic simulations. Figure 4 shows284

the results obtained for the example transmission when two different values285

of transmitted torque are considered (10 and 100 Nm). The increase in the286

transmitted torque leads to the extension of the meshing period with a couple287

of teeth pairs in contact.288
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Figure 4: Meshing Stiffness for successive teeth contacts for two levels of transmitted
torque (Dashed line 10 Nm; Solid line 100 Nm)

Once completed the calculation of individual meshing stiffness, the orig-289

inal model was applied to assess the consequences of a wrong formulation of290

meshing stiffness and to understand its influence on the simulated behaviour.291

In order to do that, three analysis were done for the example transmission292
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considering a rotational speed of 1000 rpm and a torque of 100 Nm. The first293

one, hereinafter called A, was carried out using the original dynamic model.294

A second one, called B, was done under the same torque of 100 Nm but295

using pre-calculated stiffness corresponding to the same torque (100 Nm).296

Finally, the third one, designed as C, was done again with a torque of 100297

Nm but this time using a pre-calculated stiffness obtained under a torque298

of 10 Nm. In this way, case C could be considered similar to the conven-299

tional torque-independent models. With the aim of comparison, the Dynamic300

Transmission Error (DTE) was obtained for each simulation according to the301

following expression:302

DTE(t) = θ1G1(t)−
Z2

Z1
θ2G1(t); (10)

Where, Zi represents the number of teeth for each gear, which in the303

example analyzed are the same. Figure 5 shows the resulting DTE for each304

model corresponding to five meshing cycles. There, the differences between305

models become clear: while the model with pre-calculated stiffness based on306

a torque of 100 Nm gives a DTE with very small differences with respect307

to the model without pre-calculation, the model based on a pre-calculated308

meshing stiffness under a torque of 10 Nm provides a completely different309

response, tending to overestimate the resultant DTE amplitude.310
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Figure 5: DTE obtained under different assumptions for Meshing Stiffness (Km) Calcula-
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The differences are even more evident when the spectral decomposition311

of the resulting LOA force transmitted by the bearing (identified as 1b1 in312

Figure 6) is considered. Once again, the model with pre-calculated meshing313

stiffness using the appropriate torque of 100 Nm (Figure 6(b)) practically pro-314

vides the same results as the model without pre-calculation shown in Figure315

6(a), with negligible differences on the harmonics amplitude. On the other316

side, the model simulated using a wrong estimation of the meshing stiffness,317

based on the pre-calculated values obtained for a torque of 10 Nm, provides a318

spectrum (Figure 6(c)) completely different, particularly overestimating the319

4th and 5th harmonic of the Gear Mesh Frequency (GMF).320
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Figure 6: Spectrum of the LOA force in the support 1b1 (1000 rpm, 100 Nm)

Therefore, the use of simplified models with pre-calculated values for the321

contacting stiffness can be useful in dynamics simulations, providing the same322

results as those from more complex models with a shorter computation time.323

However, if what is required is an accurate estimate of the behavior under324

certain operating conditions, as it could happen in the case of condition325

monitoring applications, the torque used to pre-calculate meshing stiffness326

should agree with that used for the dynamic simulation, giving inaccurate327

results otherwise.328

6.2. The effect of bearing clearances and friction forces329

Having demonstrated the ability of the model to take into account the330

torque level, in this section it was used to characterize the role of bearing331

clearances and friction forces, and their interaction under several load levels,332

in the resulting dynamic behavior. Four cases were considered as a prelimi-333

nary test to discern the impact of each aspect on the final vibratory signature334

(see Table 4).335
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Table 4: Scenarios for dynamic simulations
Case No. Bearing clearance Gear friction forces

1 Yes No
2 Yes Yes
3 No No
4 No Yes

In the first case, simulations were done considering bearing clearances336

(no pre-loads) while gear friction forces were removed (friction coefficient337

null). In the second case, simulations were carried out considering bearing338

clearances (no pre-load) combined with friction forces (considering several339

friction coefficients). In the third case, bearing pre-loads (no clearances)340

were introduced while gear friction forces were once more time removed from341

the simulations (friction coefficient null). Finally, in the fourth case, bearing342

pre-loads (no clearance) and gear friction forces were combined.343

6.2.1. Bearing clearance without gear friction forces344

The resultant orbits obtained in the dynamic simulations for a bearing cy-345

cle, after removing the initial transient, are presented in Figure 7. In contrast346

with the results obtained in quasi-static analysis, dynamic terms provide or-347

bits with higher amplitude in the LOA. This fact can be appreciated with348

more detail in Figures 8(a) and 8(b), where it is presented the orbit for one349

cycle of the 1b1 bearing when the applied torque is 10 Nm and 100 Nm. The350

symbols (◦) and (�) represent the beginning and end point of the orbit for351

a bearing period respectively.352

Moreover, it can be observed how bearing compliances change for each353

bearing interact with gear mesh excitation, providing several oscillations for354

a bearing cycle. Regarding the DTE, the results obtained for a gear cycle355

running at 1000 rpm under several torque loads are presented in Figure 9.356

As the torque rises, the DTE is shifted up, as a consequence of the additional357

kinematical turn required to close the contact when the gear center distance358

is increased due to the shaft and bearing flexibilities. This phenomenon, to-359

gether with the tooth deflection determines the start and end time of contact360

between successive teeth pairs, and therefore the resultant DTE. The DTE361

obtained with the lowest torque (see Figure 10(a)) exhibit a remarkable os-362

cillation at the (BPF). The corresponding angular period is determined from363

Eq.(6), substituting the cage rotation to the angle between rolling elements364

and solving the angle rotated by the inner ring under the assumption that it365
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Figure 8: Bearing 1b1 center orbit for quasi-static (blue) and dynamic analysis at 1000
rpm (red)

is fixed to the gear shaft and that the outer ring is fixed to the case.366

After substitution of the values corresponding to the bearing listed in367

Table 3, the number of bearing cycles per gear turn is 3.6342. Figures 10(a)368

and 10(b) shows the bearing periods corresponding to a gear turn for the369

extreme values of the transmitted torque. Otherwise, when the torque be-370
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Figure 10: DTE for a gear turn running at 1000 rpm

comes higher, the effect of bearing variable compliance is lessened, being371

more difficult to discern its presence on the DTE record (see Figure 10(b)).372

In fact, smoothed amplitudes for ball pass frequency are commonly expected,373

because the effective slipping at the rolling contacts gives place to random374

fluctuations on the cage frequency even for stationary input speed. Thus the375

vibration energy is spread in the frequency domain, and the corresponding376

peaks are masked by the random noise. Moreover, the application of bearing377
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preloads removes the bearing clearance, reducing the amplitude of the vari-378

able bearing compliance and therefore the magnitude of the corresponding379

harmonics.380
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Figure 11: DTE spectra for several torque loads

The corresponding linear spectrum for the torque range analyzed is pre-381

sented as a waterfall diagram in Figure 11. There, the main peaks appear at382

the GMF and its harmonics but also it is possible to appreciate a little peak383

corresponding to the BPF, which is more noticeable for low torques.384

Regarding the force transmitted through the bearings to the case, Fig-385

ure 12 shows the waterfall spectrum of the forces at the bearing designated386

as 1b1 in Figure 1 (bearing 1 on shaft 1) in the LOA. As with the DTE,387

two excitation frequencies can be appreciated due to GMF and BPF, being388

dominant the harmonics of the GMF. Up to three harmonics of the BPF389

can be discerned at the low frequency range but also as lateral sidebands390

of the GMF harmonics. As the transmitted torque increases, the amplitude391

of GMF harmonics rises but there are changes in their relative importance.392

Thus, for low torque values up to 40 Nm the dominant harmonic is the sec-393

ond one, while for higher torques the 5th becomes the highest. On the other394

side, BPF harmonics show a reduction for torques of 60 and 70 Nm. This395

fact is consistent with the amplitude of the orbit in the LOA obtained in the396

quasi-static analysis shown in Figure 3. The BPF in the low frequency range397

will be lower in real machinery because the slipping at the rolling contacts398
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Figure 12: LOA Bearing force (1b1) spectra for several torques

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

x GMF

B
ea

rin
g 

F
or

ce
 (

//L
O

A
) 

[N
]         2xBPF

        3xBPF

2xGMF

5xGMF

8xGMF

10xGMF

1xGMF

4xGMF

6xGMF
7xGMF

3xGMF

2xGMF−2xBPF

         1xBPF

9xGMF

2xGMF+2xBPF

(a) Torque 10 Nm

0 2 4 6 8 10 12
10

−3

10
−2

10
−1

10
0

10
1

10
2

x GMF

B
ea

rin
g 

F
or

ce
 (

//L
O

A
) 

[N
]

        1xBPF

        2xBPF

        3xBPF

2xGMF
4xGMF

2xGMF−BPF

6xGMF

7xGMF

9xGMF
10xGMF

1xGMF

2xGMF+BPF

8xGMF

5xGMF
3xGMF

(b) Torque 100 Nm

Figure 13: Bearing 1b1 LOA force spectrum

yields to a non-stationary behavior and as a consequence the BPF energy399

is spread in the vicinity band and masked by the noise floor. Obviously,400

although the amplitude of all harmonics is generally increased as the torque401

rises, that increment has a different shape for each harmonic because of the402

non-linear changes on the parametric excitation due to the gear meshing403

stiffness and its interaction with bearing variable compliance. This aspect404

shows the importance of having a torque dependent model for on condition405

monitoring.406
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A more detailed view of the 1b1 LOA force spectra for 10 and 100 Nm407

is presented in Figure 13, where the force amplitude was represented in log-408

scale to discern better the consequences of the BPF modulations. As it409

was remarked previously for the lowest torque (Figure 13(a)), the highest410

amplitude corresponds to the 2nd GMF harmonic while it corresponds to the411

5th for the maximum assessed torque (Figure 13(b)).412

6.2.2. Bearing clearance with gear friction forces413

In the following, friction efforts combined with bearing clearances and414

preloads are analyzed with the aim to better understand the role played by415

these factors on the gear transmission dynamics and particularly on the vi-416

bratory magnitudes under stationary conditions. To carry out this task, the417

original model was modified including the friction efforts and dynamic sim-418

ulations were done again with the same set up for the integration algorithm419

and working conditions. Two friction coefficients have been considered: 0.03420

and 0.05. From the point of view of the bearing center orbits, the differences421

are clear as it can be seen in Figure 14.422
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Figure 14: Bearing 1b1 and 2b1 center orbits at 1000 rpm, with several transmitted torques
(dashed line depicts the bearing clearance.)

Due to bearing clearance, OLOA bearing stiffness is lower than in the423

LOA direction, and as a consequence the orbits are spread on the OLOA for424

quasi-static analysis. Nevertheless, when dynamic simulations are carried425

out this fact becomes masked by the longest displacements in the LOA (see426

Figure 7 and Figure 8). Friction forces enlarge the OLOA’s displacements427
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of bearing centers and as a consequence gears present a swinging motion428

governed by the bearing clearance. As the friction coefficient increases, this429

phenomenon is more evident and the OLOA’s displacements grow. To have a430

better insight of the orbit origin, in Figure 15 the orbits obtained for bearing431

1b1 are presented, corresponding to the extreme values of the torque range432

(10 and 100 Nm) for f = 0, 0.03 and 0.05.433
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Figure 15: Detail of the Bearing 1b1 Orbit at 1000 rpm and three friction coefficients 0
(left column); 0.03 (middle column) and 0.05 (Right column)

More interesting conclusions can be drawn from the spectral decomposi-434

tion of the bearing forces. In the case of the LOA in Figure 16, the most435

evident change is the generalized increment in the amplitude of sidebands436

around the GMF at the BPF as the friction coefficient raises. This incre-437

ment is particularly large around the 2nd, 3th and the 4th GMF harmonics.438

This behavior can be explained by the excitation of both translational modes439

located between 472-1130 Hz and 1291-2000 Hz in the load range considered440

in the simulation (see Table 5). The reader can find more details about441

this modes in [34] where the authors identify the natural frequencies and442

modal shapes of the same transmission, linearizing the model by averaging443

the compliance of bearings and gears along a cycle.444

As a consequence resonant frequencies change notably as a function of445

the torque and this change is more evident in the modes where bearing stiff-446

ness plays an important role. These modes involve translational motions447

and appear in pairs one for normal direction (LOA) and one for tangential448

direction (OLOA). For each pair, the tangential ones (OLOA) have lower449

24



0 2 4 6 8 10 12
0

50

100
0

20

40

60

80

100

f=0

x GMF

Torque [Nm]

B
ea

rin
g 

(1
b1

) 
F

or
ce

 (
LO

A
) 

[N
]

0 2 4 6 8 10 12
0

50

100
0

20

40

60

80

100

f=0.03

x GMF

Torque [Nm]

B
ea

rin
g 

(1
b1

) 
F

or
ce

 (
LO

A
) 

[N
]

0 2 4 6 8 10 12
0

50

100
0

20

40

60

80

100

f=0.05

x GMF

Torque [Nm]

B
ea

rin
g 

(1
b1

) 
F

or
ce

 (
LO

A
) 

[N
]

Figure 16: Amplitude spectrum of the Bearing 1b1 LOA force at 1000 rpm for several
torques
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Table 5: Natural frequencies and mode type with bearing clearance under several trans-
mitted torques. Modes were classified as: Rotational R, Translational T and Mixed Modes
R-T.

Mode
Freq (Hz)
10 Nm

Freq (Hz)
50 Nm

Freq (Hz)
100 Nm

Mode Type

1 411 770 913 R1-T
2 472 922 1130 Tt1
3 1061 1384 1523 R1-T
4 1291 1775 2000 Tn1
5 1966 2175 2307 R1-T
6 4284 4320 4339 R2-T
7 5909 6003 6056 R3-T
8 6562 6650 6709 Tt2
9 6605 6706 6771 R3-T
10 6763 6967 7083 Tn2
11 6867 7074 7193 R3-T
12 9701 9763 9806 Tt3
13 9739 9819 9863 R3-T
14 9847 10008 10107 Tn3
15 9972 10122 10215 R3-T
16 14382 14382 14382 R4
17 14702 14702 14702 R5
18 15744 15745 15746 R6
19 15938 15947 15952 R7

frequencies because of the less stiffness in this direction as a consequence of450

bearing clearance.451

Due to the speed used for simulations (1000 rpm), 2nd, 3th and the 4th452

GMF harmonics match with 2nd and 4th modes for a certain range of the ap-453

plied torque. As a consequence the sidebands around these GMF peaks raise454

particularly near the fourth one, as in this case the mode involves translation455

into the LOA (subscript n means normal movement that is LOA).456

On the other side, the spectra in the OLOA (the tangential direction in457

the mode classification) presented in Figure 17 shows a generalized increment458

of the GMF amplitude particularly from the 1st to the 3th when friction459

forces are considered in simulations. Furthermore, friction forces amplify the460

lateral sidebands at the BPF, particularly around the 2nd GMF harmonic461

which excites the 2nd mode involving motion in the OLOA direction.462

6.2.3. Bearing pre-loads (no clearance) without gear friction forces463

In this section the role of bearing preloads on the behavior of bearings464

and their consequences on the transmission dynamics have been analyzed465

in order to assess the performance of the developed model. Introducing466

bearing preloads is accomplished by assigning a negative value for clearance467

in Eq.(8). Thus, rolling elements become in contact even when there is no468
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Figure 17: Amplitude spectrum of the Bearing 1b1 OLOA force at 1000 rpm for several
torques

torque applied to the transmission. The main consequence is that average469

bearing stiffness in LOA remains close to the case without preload while470

OLOA become higher. Therefore the orbit amplitude is roughly the same471

in the meshing direction (LOA) but is shortened in the tangential direction472

(OLOA). This fact can be observed in Figure 18 where the results were473

obtained using a negative value for the clearance equal to 0.001 mm. Bearing474

preload constraint the orbit centroid at the inner area of the circle defined475

by the nominal clearance, which is represented to facilitate comparison with476

the simulations where clearance was considered. This constraint reduces the477

average value of the Loaded Transmission Error due to the consequent minor478

variation on the gear center distance with respect to the nominal, caused by479

the reduced backlash (see Figure 19) shifting down the Loaded Transmission480

Error curves. Furthermore, it can be appreciated a lower modulation of the481

meshing phenomena by the ball pass frequency of the bearing which is much482

more evident for low transmitted torques when clearances are present.483

As a consequence it can be observed the lateral sidebands disappearance484

at the BPF around the GMF harmonics in the amplitude spectrum of the485

bearing transmitted forces. Meanwhile, the low frequency harmonics at the486

BPF are strongly attenuated (see Figure 20). To facilitate the comparison487

the spectra corresponding to a torque of 100 Nm of the 1b1 LOA force when488

clearance and preload were considered are presented in log-scale in Figure489

21.490
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Figure 18: Bearing 1b1 and 2b1 center orbits at 1000 rpm, with several transmitted torques
with preload bearing preload (c=-0.001 mm). Dashed line depicts bearing clearance
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two levels of transmitted torque (Dashed line 10 Nm; Solid line 100 Nm)

6.2.4. Bearing pre-loads (no clearance) and gear friction forces491

When preload and friction are combined in simulations the resulting orbits492

are those shown in Figure 22. As it was observed under the no preload493
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Figure 20: Amplitude spectrum of the Bearing 1b1 LOA force at 1000 rpm for several
torques and bearing preload (c=-0.001 mm)
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Figure 21: Comparison of amplitude spectrum of the Bearing 1b1 LOA force at 1000 rpm
@ 100 Nm, with clearance and with preload (c=-0.001 mm)

case, friction leads to a magnification of the OLOA’s displacements, which494

is even more evident as the friction coefficient rises. Nevertheless, due to the495

bearing preload, OLOA’s lateral bearing stiffness increases, preventing the496
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characteristic swinging motion observed when bearing clearances exist.
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Figure 22: Bearing 1b1 and 2b1 center orbits at 1000 rpm, working under several trans-
mitted torques, with bearing preload
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Figure 23: Comparison of amplitude spectrum of bearing 1b1 LOA force at 1000 rpm @
100 Nm, with preload and with (red-dashdot) and without friction (blue-solid)

With respect to Loaded Transmission Error and bearing forces, time498

records follow a similar pattern as that obtained with preloads. The most499

important consequence of friction force was the increment of the amplitude500
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Table 6: Natural frequencies and mode type with preload under several transmitted
torques. Modes were classified as: Rotational R, Translational T and Mixed Modes R-T.

Mode
Freq (Hz)
10 Nm

Freq (Hz)
50 Nm

Freq (Hz)
100 Nm

Mode Type

1 981 1097 1158 R1-T
2 1431 1626 1766 Tt1
3 1476 1705 1864 R1-T
4 1507 1826 2036 Tn1
5 2091 2245 2362 R1-T
6 4294 4328 4347 R2-T
7 5932 6026 6080 R3-T
8 6816 6898 6963 Tt2
9 6833 6926 7000 R3-T
10 6847 6993 7103 Tn2
11 6970 7121 7230 R3-T
12 9887 9952 10005 Tt3
13 9900 9977 10038 R3-T
14 9911 10029 10124 Tn3
15 10050 10161 10246 R3-T
16 14382 14382 14382 R4
17 14702 14702 14702 R5
18 15744 15745 15746 R6
19 15938 15947 15952 R7

of lateral sidebands at the BPF around the GMF harmonics, as it was also501

observed in the case of bearing clearances.502

This fact can be appreciated in Figure 23 where the spectra in log-scale503

with and without friction are compared when preloads are considered in the504

simulations. It is remarkable the amplitude increment of the BPF sidebands505

around the 3rd, 4th but also on 7th and 8th GMF harmonics.506

As preloads involve an increment of the bearing stiffness, particularly in507

the OLOA, natural frequencies corresponding to the lower modes becomes508

higher, as it can be observed in Table 6. As a consequence, sideband activity509

at the BPF is shifted to the 3rd and 4th GMF harmonics as they are located in510

the range between 1431-1766 Hz and 1507-2036 Hz, where the translational511

modes are excited.512

More evident changes can be appreciated in the OLOA direction by com-513

parison with respect to the case with bearing clearance, particularly in the514

presence of friction. In Figure 24 it can be observed the presence of peaks515

at the 3rd and the 4th GMF harmonic when bearing preloads were included516

in the analysis. In contrast, when clearances were considered, it was the 2nd517

GMF harmonic which became the most important. Moreover, in the OLOA518

the BPF modulation appears clearly independently of the load and friction,519

in opposite to the attenuation observed in the LOA.520
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Figure 24: Amplitude spectrum of the Bearing 1b1 OLOA force at 1000 rpm for several
torques, with bearing preload (c=-0.001 mm) and friction

7. Conclusions521

Gear transmissions remain as one of the most complex mechanical sys-522

tems from the point of view of noise and vibration behavior. Research on523

gear modeling leading to the obtaining of models capable of accurately re-524

produce the dynamic behavior of real gear transmissions has spread out the525

last decades. Most of these models, although useful for design stages, often526

include simplifications that impede their application for condition monitoring527

purposes. Trying to filling this gap, the model presented in this paper al-528

lows to simulate gear transmission dynamics including most of these features529

usually neglected by the state of the art models.530

The developed model is capable of considering simultaneously the inter-531

nal excitations due to the variable meshing stiffness (including the coupling532

among successive tooth pairs in contact, the non-linearity linked with the533

contacts between surfaces and the dissipative effects), and those excitations534

consequence of the bearing variable compliance (including clearances or pre-535

loads). Another strong feature of the modeling approach is the fact that it536

allows for the simulation of gear dynamics in a realistic torque dependent537

scenario.538

Torque level has a direct impact on the amplitude of GMF harmonics,539

for which non-torque dependent models would provide dramatically different540

spectral decompositions of measured transmitted forces in an on condition541

monitoring application. In contrast, the proposed method simulates the dy-542
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namic behavior under different torque levels, observing significant changes in543

the amplitude of the GMF harmonics as a result of the excitation of trans-544

verse vibration modes in the LOA. As a consequence the forces at bearing545

level show that GMF harmonics present changes not only in their absolute546

amplitudes but also in their relative importance for each applied load. This547

fact is due to the non-linearity involved on both gears and bearings, providing548

different resonant frequencies depending on the transmitted load.549

The inclusion of dissipative effects in the modeling approach allows for the550

consideration of the friction meshing forces. The model is capable of simulate551

different scenarios in which it can be shown that friction forces magnify BPF552

sidebands in the transmitted forces signal in the LOA and even more clearly553

in the OLOA due to the extension of the gear center orbit in this direction.554

The model is also capable of showing the differences that would be en-555

countered in the vibratory signal of a gear transmission either preloads are556

included or not in the bearing support. As the simulation results point out,557

the gear orbit amplitude when preload is considered is shortened in the OLOA558

direction, remaining similar for the LOA direction, thus reducing the Loaded559

Transmission Error and resulting in the lateral sidebands disappearance at560

the BPF around the GMF harmonics in the spectrum of the measured bear-561

ing transmitted forces.562

In view of the results, the proposed model constitutes a valuable starting563

point to develop on condition monitoring tools. Further work should be done564

in order to assess the behavior on non-stationary conditions.565
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Annex A: Dynamic Equations668

Based on the description given in section 2 and on Figure 1 the governing669

equations of motion for each element considered in the sample transmission670

were derived as follows.671

θ̇In = ω (A. 1)

m1b1ẍ1b1 +C1b1G1(ẋ1b1 − ẋ1G1) + C1b1(ẋ1b1)+
+K1b1G1(x1b1 − x1G1) + f1b1x(q1b1) = 0;

m1b1ÿ1b1+C1b1G1(ẏ1b1 − ẏ1G1) + C1b1(ẏ1b1)+
+K1b1G1(y1b1 − y1G1) + f1b1y(q1b1) = 0;

J1b1θ̈1b1 +CT1J1b1(θ̇1b1 − θ̇In) + CT1b1G1(θ̇1b1 − θ̇1G1)+
+KT1J1b1(θ1b1 − θIn) +KT1b1G1(θ1b1 − θ1G1) = 0;

(A. 2)

m1b2ẍ1b2 +C1G1b2(ẋ1b2 − ẋ1G1) + C1b2(ẋ1b2)+
+K1G1b2(x1b2 − x1G1) + f1b2x(q1b2) = 0;

m1b2ÿ1b2+C1G1b2(ẏ1b2 − ẏ1G1) + C1b2(ẏ1b2)+
+K1G1b2(y1b2 − y1G1) + f1b2y(q1b2) = 0;

J1b2θ̈1b2 +CT1G1b2(θ̇1b2 − θ̇1G1) +KT1G1b2(θ1b2 − θ1G1) = 0;

(A. 3)

m2b1ẍ2b1 +C2b1G1(ẋ2b1 − ẋ2G1) + C2b1(ẋ2b1)+
+K2b1G1(x2b1 − x2G1) + f2b1x(q2b1) = 0;

m2b1ÿ2b1+C2b1G1(ẏ2b1 − ẏ2G1) + C2b1(ẏ2b1)+
+K2b1G1(y2b1 − y2G1) + f2b1y(q2b1) = 0;

J2b1θ̈2b1 +CT2b1G1(θ̇2b1 − θ̇2G1) +KT2b1G1(θ2b1 − θ2G1) = 0;

(A. 4)
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m2b2ẍ2b2 +C2G1b2(ẋ2b2 − ẋ2G1) + C2b2(ẋ2b2)+
+K2G1b2(x2b2 − x2G1) + f2b2x(q2b2) = 0;

m2b2ÿ2b2+C2G1b2(ẏ2b2 − ẏ2G1) + C2b2(ẏ2b2)+
+K2G1b2(y2b2 − y2G1) + f2b2y(q2b2) = 0;

J2b2θ̈2b2 +CT2b2J2(θ̇2b2 − θ̇2J2) + CT2G1b2(θ̇2b2 − θ̇2G1)+
+KT2b2J2(θ2b2 − θ2J2) +KT2G1b2(θ2b2 − θ2G1) = 0;

(A. 5)

m1G1ẍ1G1+C1b1G1(ẋ1G1 − ẋ1b1) + C1G1b2(ẋ1G1 − ẋ1b2)+
+K1b1G1(x1G1 − x1b1) +K1G1b2(x1G1 − x1b2)+
+f1G12G1x(q1G1, q2G1, q̇1G1, q̇2G1) = 0;

m1G1ÿ1G1+C1b1G1(ẏ1G1 − ẏ1b1) + C1G1b2(ẏ1G1 − ẏ1b2)+
+K1b1G1(y1G1 − y1b1) +K1G1b2(y1G1 − y1b2)+
+f1G12G1y(q1G1, q2G1, q̇1G1, q̇2G1) = 0;

J1G1θ̈1G1+CT1b1G1(θ̇1G1 − θ̇1b1) + CT1G1b2(θ̇1G1 − θ̇1b2)+
+KT1b1G1(θ1G1 − θ1b1) +KT1G1b2(θ1G1 − θ1b2)+
+f1G12G1θ(q1G1, q2G1, q̇1G1, q̇2G1) = 0;

(A. 6)

m2G1ẍ2G1 +C2b1G1(ẋ2G1 − ẋ2b1) + C2G1b2(ẋ2G1 − ẋ2b2)+
+K2G1b2(x2G1 − x2b2) +K2b1G1(x2G1 − x2b1)+
+f2G11G1x(q1G1, q2G1, q̇1G1, q̇2G1) = 0;

m2G1ÿ2G1+C2b1G1(ẏ2G1 − ẏ2b1) + C2G1b2(ẏ2G1 − ẏ2b2)+
+K2G1b2(y2G1 − y2b2) +K2b1G1(y2G1 − y2b1)+
+f2G11G1y(q1G1, q2G1, q̇1G1, q̇2G1) = 0;

J2G1θ̈2G1 +CT2b1G1(θ̇2G1 − θ̇2b1) + CT2G1b2(θ̇2G1 − θ̇2b2)+
+KT2b1G1(θ2G1 − θ2b1) +KT2G1b2(θ2G1 − θ2b2)+
+f2G11G1θ(q1G1, q2G1, q̇1G1, q̇2G1) = 0;

(A. 7)

J2J2θ̈2J2 + CT2b2J2(θ̇2J2 − θ̇2b2) +KT2b2J2(θ2J2 − θ2b2) = TOut; (A. 8)

Where miEj and JiEj represent respectively translational and rotational iner-672

tia lumped at the center of the element j belonging to the shaft i. Meanwhile,673

the stiffness and damping associated with the flexural behavior of the con-674

necting shafts between the different elements (Ej and Ek) becomes defined675
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Figure A. 1: Flow diagram for equation A. 9

by KiEjEk and CiEjEk, while subscript T is added to distinguish torsional676

properties. Moreover, Cibj describes the viscous damping associated with677

the bearing j belonging to the shaft i, and fibj(qibj) provides the force on678

bearing bj belonging to the shaft i while fiGjkGt(qiGj, qkGt) gives the meshing679

forces on shaft i due to the contact of gear Gj on shaft i with gear Gt on680

shaft k. As friction and damping are included in the meshing formulation,681

the corresponding function requires the gear center positions and also the682

first derivatives.683

Then, mass, damping and stiffness matrices for the whole system (shafts,684

gears and bearings) are assembled into the dynamic matrix equation defined685

in Eq.(1). Numerical integration of dynamic equations was done combining686

Matlab and Simulinkr tools. For this purpose, the general equation Eq.(1)687

was reformulated for its implementation in Simulinkr environment arriving688

at the following expression:689

q̈ = M−1 (fExt(t)−Cq̇−Kq− fb(q)− fG(q, q̇)) ; (A. 9)

Fig. A. 1 shows the flow diagram corresponding to Eq.(A. 9). There,690

function blocks with ad-hoc Matlabr functions were used for the non-linear691

terms due to gears and bearings while ode45 solver was used for numerical692

integration.693

Annex B: Bearing contact stiffness (kRE)694

Hertzian theory considers the contact between two bodies (hereinafter
designated as A and B) with curved surfaces subjected to a load F. The
surface of each contacting body is represented by two ellipsoids defined by
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the radii of curvature in two perpendicular planes (rA1, rA2, rB1, rB2) adopting
the negative sign for concave surfaces. In this work, only angular contact ball
bearings are considered. Thus, the radii of curvature for inner contact are
defined by:

rA1 = rA2 =
d

2
; rB1 = Ri; rB2 = − ri (B. 1)

While for the contact with the outer race, the radii of curvature are:695

rA1 = rA2 =
d

2
; rB1 = −Ro; rB2 = − ro (B. 2)

Where the subscript A refers to the rolling element while subscript B is696

applied for the track, Ri and Ro are the radii defined in Figure 2 whereas ri697

and ro are the curvature radii of each race channel. Then, the curvature sum698

and difference [33] are defined by:699

∑

ρ =
1

rA1
+

1

rA2
+

1

rB1
+

1

rB2
(B. 3)

F (ρ) =

(

1
rA1

− 1
rA2

)

+
(

1
rB1

− 1
rB2

)

∑

ρ
(B. 4)

The application of the classical Hertz theory requires the resolution of
complete elliptic integrals of first and second kind F y E . To avoid this
inconvenience, in the case of bearings made of steel the approximate rela-
tionships derived by Hamrock et al. [35] for steel bodies can be used, so
that:

δB = 2, 79 · 10−4δ∗ ·
(

∑

ρ
)1/3

Q2/3 (B. 5)

Where δ is the contact deflection in mm, Q is the load applied expressed700

in N and δ∗ is a dimensionless parameter which can be obtained from Table701

7, as a function of the difference of curvature F (ρ). Solving for the force Q in702

Eq.(B. 5) and identifying terms, the contact stiffness value (kC) is expressed703

as:704

kC =

(

2.15 · 105δ∗−3/2
(

∑

ρ
)

−1/2
)

; N
mm3/2 (B. 6)

Then, the total hertzian stiffness for a single ball in contact with both705

races is obtained by serial composition of the individual stiffness obtained706
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Table 7: Dimensionless contact deformation (δ∗) as a function of the curvature difference
(extracted from [33])

F (ρ) (δ∗) F (ρ) (δ∗) F (ρ) (δ∗)
0 1 0.83495 0.7602 0.995112 0.3176

0.1075 0.9974 0.87366 0.7169 0.997300 0.2705
0.3204 0.9761 0.90999 0.6636 0.9981847 0.2427
0.4795 0.9429 0.936738 0.6112 0.9989156 0.2106
0.5916 0.9077 0.95738 0.5551 0.9994785 0.17167
0.6716 0.8733 0.97290 0.4960 0.9998527 0.11995
0.7332 0.8394 0.983797 0.4352 1 0
0.7948 0.7961 0.990902 0.3745

for inner and outer races (kCi, kCo), taking into account the nonlinear rela-707

tionship between force and displacement (through the exponent p):708

kB =
kCikCo

(

k
1/p
Ci + k

1/p
Co

)p (B. 7)
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