5,793 research outputs found

    Determination of the Baryon Density from Large Scale Galaxy Redshift Surveys

    Get PDF
    We estimate the degree to which the baryon density, Ωb\Omega_{b}, can be determined from the galaxy power spectrum measured from large scale galaxy redshift surveys, and in particular, the Sloan Digital Sky Survey. A high baryon density will cause wiggles to appear in the power spectrum, which should be observable at the current epoch. We assume linear theory on scales ≥20h−1Mpc\geq 20h^{-1}Mpc and do not include the effects of redshift distortions, evolution, or biasing. With an optimum estimate of P(k)P(k) to k∼2π/(20h−1Mpc)k\sim 2\pi/(20 h^{-1} Mpc), the 1σ1 \sigma uncertainties in Ωb\Omega_{b} are roughly 0.07 and 0.016 in flat and open (Ω0=0.3\Omega_{0}=0.3) cosmological models, respectively. This result suggests that it should be possible to test for consistency with big bang nucleosynthesis estimates of Ωb\Omega_{b} if we live in an open universe.Comment: 23 Pages, 10 Postscript figure

    Using Cluster Abundances and Peculiar Velocities to Test the Gaussianity of the Cosmological Density Field

    Get PDF
    (Abridged) By comparing the frequency of typical events with that of unusual events, one can test whether the cosmological density distribution function is consistent with the normally made assumption of Gaussianity. To this end, we compare the consistency of the tail-inferred (from clusters) and measured values (from large-scale flows) of the rms level of mass fluctuations for two distribution functions: a Gaussian, and a texture (positively-skewed) PDF. Averaging the recent large-scale flow measurements, we find that observations of the rms and the tail at the 10 h^-1 Mpc scale disfavor a texture PDF at ~1.5 sigma in all cases. However, taking only the most recent measurement of the rms, that from Willick et al. (1997b), the comparison disfavors textures for low Omega_0=0.3, and disfavors Gaussian models if Omega_0=1 (again at ~1.5 sigma). Predictions for evolution of high temperature clusters can also be made for the models considered, and strongly disfavor Omega_0=1 in Gaussian models and marginally disfavor Omega_0=1 in texture models. Only Omega_0=0.3 Gaussian models are consistent with all the data considered.Comment: 34 pg incl. 8 embedded figures, LaTeX, aaspp4.sty, submitted to Ap

    3D Spherical Analysis of Baryon Acoustic Oscillations

    Full text link
    Baryon Acoustic Oscillations (BAOs) are oscillatory features in the galaxy power spectrum and are a standard rod to measure the cosmological expansion. These have been studied in Cartesian space (Fourier or real space) or in Spherical Harmonic (SH) space in thin shells. Future wide-field surveys will cover both wide and deep regions of the sky and thus require a simultaneous treatment of the spherical sky and of an extended radial coverage. The Spherical Fourier-Bessel (SFB) decomposition is a natural basis for the analysis of fields in this geometry and facilitates the combination of BAO surveys with other cosmological probes readily described in this basis. We present here a new way to analyse BAOs by studying the BAO wiggles from the SFB power spectrum. In SFB space, the power spectrum generally has both a radial (k) and tangential (l) dependence and so do the BAOs. In the deep survey limit and ignoring evolution, the SFB power spectrum becomes radial and reduces to the Cartesian Fourier power spectrum. In the limit of a thin shell, all the information is contained in the tangential modes described by the 2D SH power spectrum. We find that the radialisation of the SFB power spectrum is still a good approximation even when considering an evolving and biased galaxy field with a finite selection function. This effect can be observed by all-sky surveys with depths comparable to current surveys. We find that the BAOs radialise more rapidly than the full SFB power spectrum. Our results suggest the first peak of the BAOs in SFB space becomes radial out to l ~ 10 for all-sky surveys with the same depth as SDSS or 2dF, and out to l ~ 70 for an all-sky stage IV survey. Subsequent BAO peaks also become radial, but for shallow surveys these may be in the non-linear regime. For modes that have become radial, measurements at different l's are useful in practice to reduce measurement errors.Comment: 6 pages + Appendix. Astro-ph abstract is abridged. Updated with comments from anonymous referee. Corrected axes of Figure 2. Extended discussion of radialisation. Accepted for publication in Astronomy & Astrophysic

    IRAS versus POTENT Density Fields on Large Scales: Biasing and Omega

    Get PDF
    The galaxy density field as extracted from the IRAS 1.2 Jy redshift survey is compared to the mass density field as reconstructed by the POTENT method from the Mark III catalog of peculiar velocities. The reconstruction is done with Gaussian smoothing of radius 12 h^{-1}Mpc, and the comparison is carried out within volumes of effective radii 31-46 h^{-1}Mpc, containing approximately 10-26 independent samples. Random and systematic errors are estimated from multiple realizations of mock catalogs drawn from a simulation that mimics the observed density field in the local universe. The relationship between the two density fields is found to be consistent with gravitational instability theory in the mildly nonlinear regime and a linear biasing relation between galaxies and mass. We measure beta = Omega^{0.6}/b_I = 0.89 \pm 0.12 within a volume of effective radius 40 h^{-1}Mpc, where b_I is the IRAS galaxy biasing parameter at 12 h^{-1}Mpc. This result is only weakly dependent on the comparison volume, suggesting that cosmic scatter is no greater than \pm 0.1. These data are thus consistent with Omega=1 and b_I\approx 1. If b_I>0.75, as theoretical models of biasing indicate, then Omega>0.33 at 95% confidence. A comparison with other estimates of beta suggests scale-dependence in the biasing relation for IRAS galaxies.Comment: 35 pages including 10 figures, AAS Latex, Submitted to The Astrophysical Journa

    Overweight status and psychological well-being in adolescent boys and girls: a multilevel analysis*

    Get PDF
    Background: Psychological distress and high body mass index (BMI) are linked in adults, especially in females. Effects of social position and behaviour, and whether obesogenic environments affect adolescents and adults equally are unresolved. The aim was to examine associations between psychological distress and being overweight in adolescents, by sex, accounting for social, lifestyle and contextual factors. Correlation of area-level variation in overweight status in adolescents and adults was investigated. Methods: Height, weight, General Health Questionnaire 12 (GHQ12) of psychological distress, physical activity, smoking, alcohol consumption, area deprivation and social class were available on 635 male and 618 female adolescents (13–15 years) from two cross-sectional population health surveys conducted in Scotland in 1998–99/2003–04. Multilevel logistic regression modelled overweight (including obese) status accounting for intraclass correlation of adolescents in households within postcode sector areas in health board regions. Univariable analysis examined effects of high (4 or more) GHQ12 score; multivariable analysis further allowed for covariates. Adult data were used to assess the importance of correlation between adolescent and adult area-level variation. Results: Univariably, there was significantly increased risk of being overweight associated with high GHQ12 score for girls but not boys; adolescent and adult area-level variation correlation did not impact. Results remained significant for girls in multivariable analyses (OR = 2.44, 95% confidence interval (CI): 1.33–4.50) and non-significant for boys (OR = 1.31, 95% CI: 0.56–3.05). Conclusions: Findings indicate being overweight is associated with psychological distress in adolescent girls, but not boys. Effects are not mediated by social, lifestyle or contextual factors

    Cosmic Flows on 100 Mpc/h Scales: Standardized Minimum Variance Bulk Flow, Shear and Octupole Moments

    Full text link
    The low order moments, such as the bulk flow and shear, of the large scale peculiar velocity field are sensitive probes of the matter density fluctuations on very large scales. In practice, however, peculiar velocity surveys are usually sparse and noisy, which can lead to the aliasing of small scale power into what is meant to be a probe of the largest scales. Previously, we developed an optimal ``minimum variance'' (MV) weighting scheme, designed to overcome this problem by minimizing the difference between the measured bulk flow (BF) and that which would be measured by an ideal survey. Here we extend this MV analysis to include the shear and octupole moments, which are designed to have almost no correlations between them so that they are virtually orthogonal. We apply this MV analysis to a compilation of all major peculiar velocity surveys, consisting of 4536 measurements. Our estimate of the BF on scales of ~ 100 Mpc/h has a magnitude of |v|= 416 +/- 78 km/s towards Galactic l = 282 degree +/- 11 degree and b = 6 degree +/- 6 degree. This result is in disagreement with LCDM with WMAP5 cosmological parameters at a high confidence level, but is in good agreement with our previous MV result without an orthogonality constraint, showing that the shear and octupole moments did not contaminate the previous BF measurement. The shear and octupole moments are consistent with WMAP5 power spectrum, although the measurement noise is larger for these moments than for the BF. The relatively low shear moments suggest that the sources responsible for the BF are at large distances.Comment: 13 Pages, 7 figures, 4 tables. Some changes to reflect the published versio

    Active Galactic Nucleus Pairs from the Sloan Digital Sky Survey. II. Evidence for Tidally Enhanced Star Formation and Black Hole Accretion

    Full text link
    Active galactic nuclei (AGNs) are occasionally seen in pairs, suggesting that tidal encounters are responsible for the accretion of material by both central supermassive black holes (BHs). In Paper I of this series, we selected a sample of AGN pairs with projected separations r_p < 100 kpc and velocity offsets < 600 km/s from the SDSS DR7 and quantified their frequency. In this paper, we address the BH accretion and recent star formation properties in their host galaxies. AGN pairs experience stronger BH accretion, as measured by their [O III]5007 luminosities (corrected for contribution from star formation) and Eddington ratios, than do control samples of single AGNs matched in redshift and host stellar mass. Their host galaxies have stronger post-starburst activity and younger mean stellar ages, as indicated by stronger H-delta absorption and smaller 4000 A break in their spectra. The BH accretion and recent star formation in the host galaxies both increase with decreasing projected separation in AGN pairs, for r_p ~< 10-30 kpc. The intensity of BH accretion, the post-starburst strength, and the mean stellar ages are correlated between the two AGNs in a pair. The luminosities and Eddington ratios of AGN pairs are correlated with recent star formation in their host galaxies, with a scaling relation consistent with that observed in single AGNs. Our results suggest that galaxy tidal interactions enhance both BH accretion and star formation in AGN pairs, even though the majority of low redshift AGNs is not coincident with on-going interactions.Comment: 16 pages, 12 figures; to appear in Ap

    Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales

    Full text link
    We present a sample of 218 new quasar pairs with proper transverse separations R_prop < 1 Mpc/h over the redshift range 0.5 < z < 3.0, discovered from an extensive follow up campaign to find companions around the Sloan Digital Sky Survey and 2dF Quasar Redshift Survey quasars. This sample includes 26 new binary quasars with separations R_prop < 50 kpc/h (theta < 10 arcseconds), more than doubling the number of such systems known. We define a statistical sample of binaries selected with homogeneous criteria and compute its selection function, taking into account sources of incompleteness. The first measurement of the quasar correlation function on scales 10 kpc/h < R_prop < 400 kpc/h is presented. For R_prop < 40 kpc/h, we detect an order of magnitude excess clustering over the expectation from the large scale R_prop > 3 Mpc/h quasar correlation function, extrapolated down as a power law to the separations probed by our binaries. The excess grows to ~ 30 at R_prop ~ 10 kpc/h, and provides compelling evidence that the quasar autocorrelation function gets progressively steeper on sub-Mpc scales. This small scale excess can likely be attributed to dissipative interaction events which trigger quasar activity in rich environments. Recent small scale measurements of galaxy clustering and quasar-galaxy clustering are reviewed and discussed in relation to our measurement of small scale quasar clustering.Comment: 25 pages, 12 figures, 9 tables. Submitted to the Astronomical Journa

    Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies

    Get PDF
    We present the power spectrum of the reconstructed halo density field derived from a sample of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey Seventh Data Release (DR7). The halo power spectrum has a direct connection to the underlying dark matter power for k <= 0.2 h/Mpc, well into the quasi-linear regime. This enables us to use a factor of ~8 more modes in the cosmological analysis than an analysis with kmax = 0.1 h/Mpc, as was adopted in the SDSS team analysis of the DR4 LRG sample (Tegmark et al. 2006). The observed halo power spectrum for 0.02 < k < 0.2 h/Mpc is well-fit by our model: chi^2 = 39.6 for 40 degrees of freedom for the best fit LCDM model. We find \Omega_m h^2 * (n_s/0.96)^0.13 = 0.141^{+0.009}_{-0.012} for a power law primordial power spectrum with spectral index n_s and \Omega_b h^2 = 0.02265 fixed, consistent with CMB measurements. The halo power spectrum also constrains the ratio of the comoving sound horizon at the baryon-drag epoch to an effective distance to z=0.35: r_s/D_V(0.35) = 0.1097^{+0.0039}_{-0.0042}. Combining the halo power spectrum measurement with the WMAP 5 year results, for the flat LCDM model we find \Omega_m = 0.289 +/- 0.019 and H_0 = 69.4 +/- 1.6 km/s/Mpc. Allowing for massive neutrinos in LCDM, we find \sum m_{\nu} < 0.62 eV at the 95% confidence level. If we instead consider the effective number of relativistic species Neff as a free parameter, we find Neff = 4.8^{+1.8}_{-1.7}. Combining also with the Kowalski et al. (2008) supernova sample, we find \Omega_{tot} = 1.011 +/- 0.009 and w = -0.99 +/- 0.11 for an open cosmology with constant dark energy equation of state w.Comment: 26 pages, 19 figures, submitted to MNRAS. The power spectrum and a module to calculate the likelihoods is publicly available at http://lambda.gsfc.nasa.gov/toolbox/lrgdr/ . v2 fixes abstract formatting issu
    • …
    corecore