10 research outputs found

    Morphometric Relationship, Phylogenetic Correlation, and Character Evolution in the Species-Rich Genus Aphis (Hemiptera: Aphididae)

    Get PDF
    The species-rich genus Aphis consists of more than 500 species, many of them host-specific on a wide range of plants, yet very similar in general appearance due to convergence toward particular morphological types. Most species have been historically clustered into four main phenotypic groups (gossypii, craccivora, fabae, and spiraecola groups). To confirm the morphological hypotheses between these groups and to examine the characteristics that determine them, multivariate morphometric analyses were performed using 28 characters measured/counted from 40 species. To infer whether the morphological relationships are correlated with the genetic relationships, we compared the morphometric dataset with a phylogeny reconstructed from the combined dataset of three mtDNA and one nuclear DNA regions.Based on a comparison of morphological and molecular datasets, we confirmed morphological reduction or regression in the gossypii group unlike in related groups. Most morphological characteristics of the gossypii group were less variable than for the other groups. Due to these, the gossypii group could be morphologically well separated from the craccivora, fabae, and spiraecola groups. In addition, the correlation of the rates of evolution between morphological and DNA datasets was highly significant in their diversification.The morphological separation between the gossypii group and the other species-groups are congruent with their phylogenetic relationships. Analysis of trait evolution revealed that the morphological traits found to be significant based on the morphometric analyses were confidently correlated with the phylogeny. The dominant patterns of trait evolution resulting in increased rates of short branches and temporally later evolution are likely suitable for the modality of Aphis speciation because they have adapted species-specifically, rapidly, and more recently on many different host plants

    Macroevolutionary Patterns in the Aphidini Aphids (Hemiptera: Aphididae): Diversification, Host Association, and Biogeographic Origins

    Get PDF
    , the most diverse genus in the family. We used a combined dataset of one nuclear and four mitochondrial DNA regions. A molecular dating approach, calibrated with fossil records, was used to estimate divergence times of these taxa.Most generic divergences in Aphidini occurred in the Middle Tertiary, and species-level divergences occurred between the Middle and Late Tertiary. The ancestral state of host use for Aphidini was equivocal with respect to three states: monoecy on trees, heteroecy, and monoecy on grasses. The ancestral state of Rhopalosiphina likely included both heteroecy and monoecy, whereas that of Aphidina was most likely monoecy. The divergence times of aphid lineages at the generic or subgeneric levels are close to those of their primary hosts. The species-level divergences in aphids are consistent with the diversification of the secondary hosts, as a few examples suggest. The biogeographic origin of Aphidini as a whole was equivocal, but the major lineages within Aphidina likely separated into Nearctic, Western Palearctic, and Eastern Palearctic regions.Most generic divergences in Aphidini occurred in the Middle Tertiary when primary hosts, mainly in the Rosaceae, were diverging, whereas species-level divergences were contemporaneous with diversification of the secondary hosts such as Poaceae in the Middle to Late Tertiary. Our results suggest that evolution of host alternation within Aphidini may have occurred during the Middle Tertiary (Oligocene) when the secondary hosts emerged

    Evolutionary history of aphid-plant associations and their role in aphid diversification.

    Get PDF
    UMR BGPI Ă©quipe 6; UMR CBGPAphids are intimately linked with their host plants that constitute their only food resource and habitat, and thus impose considerable selective pressure on their evolution. It is therefore commonly assumed that host plants have greatly influenced the diversification of aphids. Here, we review what is known about the role of host plant association on aphid speciation by examining both macroevolutionary and population-level studies. Phylogenetic studies conducted at different taxonomic levels show that, as in many phytophagous insect groups, the radiation of angiosperms has probably favoured the major Tertiary diversification of aphids. These studies also highlight many aphid lineages constrained to sets of related host plants, suggesting strong evolutionary commitment in aphids' host plant choice, but they fail to document cospeciation events between aphid and host lineages. Instead, phylogenies of several aphid genera reveal that divergence events are often accompanied by host shifts, and suggest, without constituting a formal demonstration, that aphid speciation could be a consequence of adaptation to new hosts. Experimental and field studies below the species level support reproductive isolation between host races as partly due to divergent selection by their host plants. Selected traits are mainly feeding performances and life cycle adaptations to plant phenology. Combined with behavioural preference for favourable host species, these divergent adaptations can induce pre- and post-zygotic barriers between host-specialized aphid populations. However, the hypothesis of host-driven speciation is seldom tested formally and must be weighed against overlooked explanations involving geographic isolation and non-ecological reproductive barriers in the process of speciation

    Data from: Assessment of a 16S rRNA amplicon Illumina sequencing procedure for studying the microbiome of a symbiont-rich aphid genus

    No full text
    The bacterial communities inhabiting arthropods are generally dominated by a few endosymbionts that play an important role in the ecology of their hosts. Rather than comparing bacterial species richness across samples, ecological studies on arthropod endosymbionts often seek to identify the main bacterial strains associated with each specimen studied. The filtering out of contaminants from the results and the accurate taxonomic assignment of sequences are therefore crucial in arthropod microbiome studies. We aimed here to validate an Illumina 16S rRNA gene sequencing protocol and analytical pipeline for investigating endosymbiotic bacteria associated with aphids. Using replicate DNA samples from 12 species (Aphididae: Lachninae, Cinara) and several controls, we removed individual sequences not meeting a minimum threshold number of reads in each sample and carried out taxonomic assignment for the remaining sequences. With this approach, we show that: i) contaminants accounted for a negligible proportion of the bacteria identified in our samples; ii) the taxonomic composition of our samples and the relative abundance of reads assigned to a taxon were very similar across PCR and DNA replicates for each aphid sample; in particular, bacterial DNA concentration had no impact on the results. Furthermore, by analysing the distribution of unique sequences across samples rather than aggregating them into operational taxonomic units (OTUs), we gained insight into the specificity of endosymbionts for their hosts. Our results confirm that Serratia symbiotica is often present in Cinara species, in addition to the primary symbiont, Buchnera aphidicola. Furthermore, our findings reveal new symbiotic associations with Erwinia and Sodalis-related bacteria. We conclude with suggestions for generating and analysing 16S rRNA gene sequences for arthropod endosymbiont studies

    Microsatellite flanking region similarities among different loci within insect species

    Get PDF
    e-mail: [email protected] audienceAlthough microsatellites are ubiquitous in eukaryota, the number of available markers varies strongly among taxa. This meta-analysis was conducted on 32 insect species. Sequences were obtained from two assembled whole genomes, whole genome shotgun (WGS) sequences from 10 species and screening partial genomic libraries for microsatellites from 23 species. We have demonstrated: (1) strong differences in the abundance of microsatellites among species; (2) that microsatellites within species are often grouped into families based on similarities in their flanking sequences; (3) that the proportion of microsatellites grouped into families varies strongly among taxa; and (4) that microsatellite families were significantly more often associated with transposable elements - or their remnants - than unique microsatellite sequence

    Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2009–31 January 2010

    No full text
    This article documents the addition of 220 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Allanblackia floribunda, Amblyraja radiata, Bactrocera cucurbitae, Brachycaudus helichrysi, Calopogonium mucunoides, Dissodactylus primitivus, Elodea canadensis, Ephydatia fluviatilis, Galapaganus howdenae howdenae, Hoplostethus atlanticus, Ischnura elegans, Larimichthys polyactis, Opheodrys vernalis, Pelteobagrus fulvidraco, Phragmidium violaceum, Pistacia vera, and Thunnus thynnus. These loci were cross-tested on the following species: Allanblackia gabonensis, Allanblackia stanerana, Neoceratitis cyanescens, Dacus ciliatus, Dacus demmerezi, Bactrocera zonata, Ceratitis capitata, Ceratitis rosa, Ceratits catoirii, Dacus punctatifrons, Ephydatia mĂŒlleri, Spongilla lacustris, Geodia cydonium, Axinella sp., Ischnura graellsii, Ischnura ramburii, Ischnura pumilio, Pistacia integerrima and Pistacia terebinthus

    Aphids (Hemiptera: Aphididae and Adelgidae) of Hawai‘i: Annotated List and Key to Species of an Adventive Fauna

    No full text
    corecore