364 research outputs found

    Learning robotic pyeloplasty without simulators: an assessment of the learning curve in the early robotic era

    Get PDF
    OBJECTIVE: To analyze our experience and learning curve for robotic pyeloplasty during this robotic procedure. METHODS: Ninety-nine patients underwent 100 consecutive procedures. Cases were divided into 4 groups of 25 consecutive procedures to analyze the learning curve. RESULTS: The median anastomosis times were 50.0, 36.8, 34.2 and 29.0 minutes (p=0.137) in the sequential groups, respectively. The median operative times were 144.6, 119.2, 114.5 and 94.6 minutes, with a significant difference between groups 1 and 2 (p=0.015), 1 and 3 (p=0.002), 1 and 4 (po0.001) and 2 and 4 (p=0.022). The mean hospital stay was 7.08, 4.76, 4.88 and 4.20 days, with a difference between groups 1 and 2 (po0.001), 1 and 3 (po0.001) and 1 and 4 (po0.001). Clinical and radiological improvements were observed in 98.9% of patients. One patient presented with recurrent obstruction. CONCLUSIONS: Our results demonstrate a high success rate with low complication rates. A significant decrease in hospital stay and surgical time was evident after 25 cases

    Crustal structure below Popocat\'epetl Volcano (Mexico) from analysis of Rayleigh waves

    Get PDF
    An array of ten broadband stations was installed on the Popocat\'epetl volcano (Mexico) for five months between October 2002 and February 2003. 26 regional and teleseismic earthquakes were selected and filtered in the frequency time domain to extract the fundamental mode of the Rayleigh wave. The average dispersion curve was obtained in two steps. Firstly, phase velocities were measured in the period range [2-50] s from the phase difference between pairs of stations, using Wiener filtering. Secondly, the average dispersion curve was calculated by combining observations from all events in order to reduce diffraction effects. The inversion of the mean phase velocity yielded a crustal model for the volcano which is consistent with previous models of the Mexican Volcanic Belt. The overall crustal structure beneath Popocat\'epetl is therefore not different from the surrounding area, and the velocities in the lower crust are confirmed to be relatively low. Lateral variations of the structure were also investigated by dividing the network into four parts and by applying the same procedure to each sub-array. No well-defined anomalies appeared for the two sub-arrays for which it was possible to measure a dispersion curve. However, dispersion curves associated with individual events reveal important diffraction for 6 s to 12 s periods which could correspond to strong lateral variations at 5 to 10 km depth

    A cadeia de valor de ostra nativa em Sergipe, Alagoas e Rio Grande do Norte.

    Get PDF
    Visando contribuir para o propósito de promover o desenvolvimento sustentável da aquicultura brasileira com foco na inovação, agregação de valor, ampliação de mercado e fortalecimento dos empreendimentos ou produtores rurais de pequeno porte e de base empresarial, o presente trabalho tem como objetivo realizar uma caracterização da cadeia de valor da ostra nativa (Crassostrea gasar) em Sergipe, Alagoas e Rio Grande do Norte.Aquaciência 2023

    Glycogene Expression Alterations Associated with Pancreatic Cancer Epithelial-Mesenchymal Transition in Complementary Model Systems

    Get PDF
    The ability to selectively detect and target cancer cells that have undergone an epithelial-mesenchymal transition (EMT) may lead to improved methods to treat cancers such as pancreatic cancer. The remodeling of cellular glycosylation previously has been associated with cell differentiation and may represent a valuable class of molecular targets for EMT.As a first step toward investigating the nature of glycosylation alterations in EMT, we characterized the expression of glycan-related genes in three in-vitro model systems that each represented a complementary aspect of pancreatic cancer EMT. These models included: 1) TGFβ-induced EMT, which provided a look at the active transition between states; 2) a panel of 22 pancreatic cancer cell lines, which represented terminal differentiation states of either epithelial-like or mesenchymal-like; and 3) actively-migrating and stationary cells, which provided a look at the mechanism of migration. We analyzed expression data from a list of 587 genes involved in glycosylation (biosynthesis, sugar transport, glycan-binding, etc.) or EMT. Glycogenes were altered at a higher prevalence than all other genes in the first two models (p<0.05 and <0.005, respectively) but not in the migration model. Several functional themes were shared between the induced-EMT model and the cell line panel, including alterations to matrix components and proteoglycans, the sulfation of glycosaminoglycans; mannose receptor family members; initiation of O-glycosylation; and certain forms of sialylation. Protein-level changes were confirmed by Western blot for the mannose receptor MRC2 and the O-glycosylation enzyme GALNT3, and cell-surface sulfation changes were confirmed using Alcian Blue staining.Alterations to glycogenes are a major component of cancer EMT and are characterized by changes to matrix components, the sulfation of GAGs, mannose receptors, O-glycosylation, and specific sialylated structures. These results provide leads for targeting aggressive and drug resistant forms of pancreatic cancer cells

    Galectin-3 negatively regulates the frequency and function of CD4+CD25+Foxp3+ regulatory T cells and influences the course of Leishmania major infection

    Get PDF
    Galectin-3, an endogenous glycan-binding protein, plays essential roles during microbial infection by modulating innate and adaptive immunity. However, the role of galectin-3 within the CD4+CD25+Foxp3+ T regulatory (TREG) cell compartment has not yet been explored. Here, we found, in a model of Leishmania major infection, that galectin-3 deficiency increases the frequency of peripheral TREG cells both in draining lymph nodes (LNs) and sites of infection. These observations correlated with an increased severity of the disease, as shown by increased footpad swelling and parasite burden. Galectin-3-deficient (Lgals3−/−) TREG cells displayed higher CD103 expression, showed greater suppressive capacity, and synthesized higher amounts of IL-10 compared with their wild-type (WT) counterpart. Furthermore, both TREG cells and T effector (TEFF) cells from Lgals3−/− mice showed higher expression of Notch1 and the Notch target gene Hes-1. Interestingly, Notch signaling components were also altered in both TREG and TEFF cells from uninfected Lgals3−/− mice. Thus, endogenous galectin-3 regulates the frequency and function of CD4+CD25+Foxp3+ TREG cells and alters the course of L. major infection.Fil: Fermino, Marise L.. Universidade de Sao Paulo; BrasilFil: Dias, Fabrício C.. Universidade de Sao Paulo; BrasilFil: Lopes, Carla D.. Universidade de Sao Paulo; BrasilFil: Souza, Maria A.. Universidade de Sao Paulo; BrasilFil: Cruz, Ângela K.. Universidade de Sao Paulo; BrasilFil: Liu, Fu Tong. University of California at Davis; Estados UnidosFil: Chammas, Roger. Universidade de Sao Paulo; BrasilFil: Roque Barreira, Maria C.. Universidade de Sao Paulo; BrasilFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Bernardes, Emerson S.. Universidade de Sao Paulo; Brasi

    Characterization of the colonic response to bisacodyl in children with treatment-refractory constipation

    Get PDF
    Background: Colonic manometry with intraluminal bisacodyl infusion can be used to assess colonic neuromuscular function in children with treatment‐refractory constipation. If bisacodyl does not induce high‐amplitude propagating contractions (HAPCs), this can be an indication for surgical intervention. A detailed characterization of the colonic response to intraluminal bisacodyl in children with constipation may help to inform clinical interpretation of colonic manometry studies. / Methods: Studies were performed in five pediatric hospitals. Analysis included identification of HAPCs, reporting HAPCs characteristics, and an area under the curve (AUC) analysis. Comparisons were performed between hospitals, catheter type, placement techniques, and site of bisacodyl infusion. / Results: One hundred and sixty‐five children were included (median age 10, range 1‐17 years; n = 96 girls). One thousand eight hundred and ninety‐three HAPCs were identified in 154 children (12.3 ± 8.8 HAPCs per child, 0.32 ± 0.21 HAPCs per min; amplitude 113.6 ± 31.5 mm Hg; velocity 8.6 ± 3.8 mm/s, propagation length 368 ± 175 mm). The mean time to first HAPC following bisacodyl was 553 ± 669 s. Prior to the first HAPC, there was no change in AUC when comparing pre‐ vs post‐bisacodyl (Z = −0.53, P = .60). The majority of HAPCs terminated in a synchronous pressurization in the rectosigmoid. Defecation was associated with HAPCs (χ 2(1)=7.04, P < .01). Site of bisacodyl administration, catheter type, and hospital location did not alter the response. / Conclusions and Inferences: Intraluminal bisacodyl induced HAPCs in 93% of children with treatment‐refractory constipation. The bisacodyl response is characterized by ≥1 HAPC within 12 minutes of infusion. The majority of HAPCs terminate in a synchronous pressurization in the rectosigmoid. Optimal clinical management based upon colonic manometry findings is yet to be determined

    Complex -Glycans Influence the Spatial Arrangement of Voltage Gated Potassium Channels in Membranes of Neuronal-Derived Cells

    Get PDF
    The intrinsic electrical properties of a neuron depend on expression of voltage gated potassium (Kv) channel isoforms, as well as their distribution and density in the plasma membrane. Recently, we showed that N-glycosylation site occupancy of Kv3.1b modulated its placement in the cell body and neurites of a neuronal-derived cell line, B35 neuroblastoma cells. To extrapolate this mechanism to other N-glycosylated Kv channels, we evaluated the impact of N-glycosylation occupancy of Kv3.1a and Kv1.1 channels. Western blots revealed that wild type Kv3.1a and Kv1.1 α-subunits had complex and oligomannose N-glycans, respectively, and that abolishment of the N-glycosylation site(s) generated Kv proteins without N-glycans. Total internal reflection fluorescence microscopy images revealed that N-glycans of Kv3.1a contributed to its placement in the cell membrane while N-glycans had no effect on the distribution of Kv1.1. Based on particle analysis of EGFP-Kv proteins in the adhered membrane, glycosylated forms of Kv3.1a, Kv1.1, and Kv3.1b had differences in the number, size or density of Kv protein clusters in the cell membrane of neurites and cell body of B35 cells. Differences were also observed between the unglycosylated forms of the Kv proteins. Cell dissociation assays revealed that cell-cell adhesion was increased by the presence of complex N-glycans of Kv3.1a, like Kv3.1b, whereas cell adhesion was similar in the oligomannose and unglycosylated Kv1.1 subunit containing B35 cells. Our findings provide direct evidence that N-glycans of Kv3.1 splice variants contribute to the placement of these glycoproteins in the plasma membrane of neuronal-derived cells while those of Kv1.1 were absent. Further when the cell membrane distribution of the Kv channel was modified by N-glycans then the cell-cell adhesion properties were altered. Our study demonstrates that N-glycosylation of Kv3.1a, like Kv3.1b, provides a mechanism for the distribution of these proteins to the cell body and outgrowths and thereby can generate different voltage-dependent conductances in these membranes

    Genome-Wide Association Study in a Lebanese Cohort Confirms PHACTR1 as a Major Determinant of Coronary Artery Stenosis

    Get PDF
    The manifestation of coronary artery disease (CAD) follows a well-choreographed series of events that includes damage of arterial endothelial cells and deposition of lipids in the sub-endothelial layers. Genome-wide association studies (GWAS) of multiple populations with distinctive genetic and lifestyle backgrounds are a crucial step in understanding global CAD pathophysiology. In this study, we report a GWAS on the genetic basis of arterial stenosis as measured by cardiac catheterization in a Lebanese population. The locus of the phosphatase and actin regulator 1 gene (PHACTR1) showed association with coronary stenosis in a discovery experiment with genome wide data in 1,949 individuals (rs9349379, OR = 1.37, p = 1.57×10−5). The association was replicated in an additional 2,547 individuals (OR = 1.31, p = 8.85×10−6), leading to genome-wide significant association in a combined analysis (OR = 1.34, p = 8.02×10−10). Results from this GWAS support a central role of PHACTR1 in CAD susceptibility irrespective of lifestyle and ethnic divergences. This association provides a plausible component for understanding molecular mechanisms involved in the formation of stenosis in cardiac vessels and a potential drug target against CAD

    Effect of heparin and heparan sulphate on open promoter complex formation for a simple tandem gene model using ex situ atomic force microscopy

    Get PDF
    The influence of heparin and heparan sulphate (HepS) on the appearance and analysis of open promoter complex (RPo) formation by E. coli RNA polymerase (RNAP) holoenzyme (σ70RNAP) on linear DNA using ex situ imaging by atomic force microscopy (AFM) has been investigated. Introducing heparin or HepS into the reaction mix significantly reduces non-specific interactions of the σ70RNAP and RNAP after RPo formation allowing for better interpretation of complexes shown within AFM images, particularly on DNA templates containing more than one promoter. Previous expectation was that negatively charged polysaccharides, often used as competitive inhibitors of σRNAP binding and RPo formation, would also inhibit binding of the DNA template to the mica support surface and thereby lower the imaging yield of active RNAP-DNA complexes. We found that the reverse of this was true, and that the yield of RPo formation detected by AFM, for a simple tandem gene model containing two λPR promoters, increased. Moreover and unexpectedly, HepS was more efficient than heparin, with both of them having a dispersive effect on the sample, minimising unwanted RNAP-RNAP interactions as well as non-specific interactions between the RNAP and DNA template. The success of this method relied on the observation that E. coli RNAP has the highest affinity for the mica surface of all the molecular components. For our system, the affinity of the three constituent biopolymers to muscovite mica was RNAP > Heparin or HepS > DNA. While we observed that heparin and HepS can inhibit DNA binding to the mica, the presence of E. coli RNAP overcomes this effect allowing a greater yield of RPos for AFM analysis. This method can be extended to other DNA binding proteins and enzymes, which have an affinity to mica higher than DNA, to improve sample preparation for AFM studies
    corecore