225 research outputs found

    Preparation, Modification, and Evaluation of Cruentaren A and Analogues

    Get PDF
    An expeditious total synthesis of the highly cytotoxic F-ATPase inhibitor cruentaren A (1) is described based on a ring-closing alkyne metathesis (RCAM) reaction for the formation of the macrocylic ring. Other key transformations comprise a C-acylation of the benzyl lithium reagent derived from orsellinic acid ester 9 with Weinreb amide 7, a CBS reduction of the resulting ketone 10, and a Soderquist propargylation of aldehyde 21 with allenylborane (S)-27 to set the C-15 chiral center of the required alcohol fragment 25. The RCAM precursor 33 was assembled by acylation of 25 with acid fluoride 32, since more conventional methods for ester bond formation were unproductive. Moreover, the choice of the protecting groups, in particular for the secondary alcohol at C-9, which is prone to engage in translactonization, turned out to be critical; a relatively stable TBDPS ether had to be chosen for this site, which was removed in the final step of the synthesis with aqueous HF since other fluoride sources met with failure. The successful synthetic route was then expanded beyond the natural product, bringing a series of analogues into reach that feature incremental but deep-seated structural modifications. Three of these fully synthetic compounds turned out to be as or even more cytotoxic than cruentaren A itself against L-929 mouse fibroblast cells, reaching IC50 values as low as 0.7 ng mL−1

    Unilateral Cleavage Furrows in Multinucleate Cells

    No full text
    Multinucleate cells can be produced inDictyosteliumby electric pulse-induced fusion. In these cells, unilateral cleavage furrows are formed at spaces between areas that are controlled by aster microtubules. A peculiarity of unilateral cleavage furrows is their propensity to join laterally with other furrows into rings to form constrictions. This means cytokinesis is biphasic in multinucleate cells, the final abscission of daughter cells being independent of the initial direction of furrow progression. Myosin-II and the actin filament cross-linking protein cortexillin accumulate in unilateral furrows, as they do in the normal cleavage furrows of mononucleate cells. In a myosin-II-null background, multinucleate or mononucleate cells were produced by cultivation either in suspension or on an adhesive substrate. Myosin-II is not essential for cytokinesis either in mononucleate or in multinucleate cells but stabilizes and confines the position of the cleavage furrows. In fused wild-type cells, unilateral furrows ingress with an average velocity of 1.7 mu m x min(-1), with no appreciable decrease of velocity in the course of ingression. In multinucleate myosin-II-null cells, some of the furrows stop growing, thus leaving space for the extensive broadening of the few remaining furrows

    Evaluation of the marginal fit of three margin designs of resin composite crowns using CAD/CAM

    Get PDF
    OBJECTIVES: To examine the marginal fit of resin composite crowns manufactured with the CEREC 3 system employing three different margin designs; bevel, chamfer and shoulder, by means of a replica technique and a luting agent. METHODS: Three master casts were fabricated from an impression of a typodont molar tooth and a full-coverage crown prepared with a marginal finish of a bevel, a chamfer and a shoulder. Each cast was replicated 10 times (n = 10). Scanning of the replicas and crown designing was performed using the CEREC ScanTM system. The crowns were milled from Paradigm MZ100TM composite resin blocks. The marginal fit of the crowns was evaluated with a replica technique (AquasilTM LV, Dentsply), and with a resin composite cement (RelyXTM Unicem, AplicapTM) and measured with a travelling microscope. Statistical analysis was performed using two-way ANOVA. RESULTS: For the replica technique the average marginal gaps recorded were: Bevel Group 105±34 mm, Chamfer Group 94±27 mm and Shoulder Group 91±22 mm. For the resin composite cement the average marginal gaps were: Bevel Group 102±28 mm, Chamfer Group 91±11 mm and Shoulder Group 77±8 mm. Two-way ANOVA analysis showed that there was no statistically significant difference between the three groups of finishing lines regardless of the cementation technique used. CONCLUSIONS: The marginal gap of resin composite crowns manufactured with the CEREC 3 system is within the range of clinical acceptance, regardless of the finishing line prepared or the cementation technique used

    The complete digital workflow in fixed prosthodontics: a systematic review

    Get PDF
    Background The continuous development in dental processing ensures new opportunities in the field of fixed prosthodontics in a complete virtual environment without any physical model situations. The aim was to compare fully digitalized workflows to conventional and/or mixed analog-digital workflows for the treatment with tooth-borne or implant-supported fixed reconstructions. Methods A PICO strategy was executed using an electronic (MEDLINE, EMBASE, Google Scholar) plus manual search up to 2016–09-16 focusing on RCTs investigating complete digital workflows in fixed prosthodontics with regard to economics or esthetics or patient-centered outcomes with or without follow-up or survival/success rate analysis as well as complication assessment of at least 1 year under function. The search strategy was assembled from MeSH-Terms and unspecific free-text words: {((“Dental Prosthesis” [MeSH]) OR (“Crowns” [MeSH]) OR (“Dental Prosthesis, Implant-Supported” [MeSH])) OR ((crown) OR (fixed dental prosthesis) OR (fixed reconstruction) OR (dental bridge) OR (implant crown) OR (implant prosthesis) OR (implant restoration) OR (implant reconstruction))} AND {(“Computer-Aided Design” [MeSH]) OR ((digital workflow) OR (digital technology) OR (computerized dentistry) OR (intraoral scan) OR (digital impression) OR (scanbody) OR (virtual design) OR (digital design) OR (cad/cam) OR (rapid prototyping) OR (monolithic) OR (full-contour))} AND {(“Dental Technology” [MeSH) OR ((conventional workflow) OR (lost-wax-technique) OR (porcelain-fused-to-metal) OR (PFM) OR (implant impression) OR (hand-layering) OR (veneering) OR (framework))} AND {((“Study, Feasibility” [MeSH]) OR (“Survival” [MeSH]) OR (“Success” [MeSH]) OR (“Economics” [MeSH]) OR (“Costs, Cost Analysis” [MeSH]) OR (“Esthetics, Dental” [MeSH]) OR (“Patient Satisfaction” [MeSH])) OR ((feasibility) OR (efficiency) OR (patient-centered outcome))}. Assessment of risk of bias in selected studies was done at a ‘trial level’ including random sequence generation, allocation concealment, blinding, completeness of outcome data, selective reporting, and other bias using the Cochrane Collaboration tool. A judgment of risk of bias was assigned if one or more key domains had a high or unclear risk of bias. An official registration of the systematic review was not performed. Results The systematic search identified 67 titles, 32 abstracts thereof were screened, and subsequently, three full-texts included for data extraction. Analysed RCTs were heterogeneous without follow-up. One study demonstrated that fully digitally produced dental crowns revealed the feasibility of the process itself; however, the marginal precision was lower for lithium disilicate (LS2) restorations (113.8 μm) compared to conventional metal-ceramic (92.4 μm) and zirconium dioxide (ZrO2) crowns (68.5 μm) (p < 0.05). Another study showed that leucite-reinforced glass ceramic crowns were esthetically favoured by the patients (8/2 crowns) and clinicians (7/3 crowns) (p < 0.05). The third study investigated implant crowns. The complete digital workflow was more than twofold faster (75.3 min) in comparison to the mixed analog-digital workflow (156.6 min) (p < 0.05). No RCTs could be found investigating multi-unit fixed dental prostheses (FDP). Conclusions The number of RCTs testing complete digital workflows in fixed prosthodontics is low. Scientifically proven recommendations for clinical routine cannot be given at this time. Research with high-quality trials seems to be slower than the industrial progress of available digital applications. Future research with well-designed RCTs including follow-up observation is compellingly necessary in the field of complete digital processing

    Making things happen : a model of proactive motivation

    Get PDF
    Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc

    Nanocarbon-Based photovoltaics

    Get PDF
    Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and superior thermal and photostability. Here we report on solar cells with active layers made solely of carbon nanomaterials that present the same advantages of conjugated polymer-based solar cells - namely solution processable, potentially flexible, and chemically tunable - but with significantly increased photostability and the possibility to revert photodegradation. The device active layer composition is optimized using ab-initio density functional theory calculations to predict type-II band alignment and Schottky barrier formation. The best device fabricated is composed of PC70BM fullerene, semiconducting single-walled carbon nanotubes and reduced graphene oxide. It achieves a power conversion efficiency of 1.3% - a record for solar cells based on carbon as the active material - and shows significantly improved lifetime than a polymer-based device. We calculate efficiency limits of up to 13% for the devices fabricated in this work, comparable to those predicted for polymer solar cells. There is great promise for improving carbon-based solar cells considering the novelty of this type of device, the superior photostability, and the availability of a large number of carbon materials with yet untapped potential for photovoltaics. Our results indicate a new strategy for efficient carbon-based, solution-processable, thin film, photostable solar cells

    Aerosol delivery to ventilated newborn infants: historical challenges and new directions

    Get PDF
    There are several aerosolized drugs which have been used in the treatment of neonatal respiratory illnesses, such as bronchodilators, diuretics, and surfactants. Preclinical in vitro and in vivo studies identified a number of variables that affect aerosol efficiency, including particle size, aerosol flows, nebulizer choice, and placement. Nevertheless, an optimized aerosol drug delivery system for mechanically ventilated infants still does not exist. Increasing interest in this form of drug delivery requires more controlled and focused research of drug/device combinations appropriate for the neonatal population. In the present article, we review the research that has been conducted thus far and discuss the next steps in developing the optimal aerosol delivery system for use in mechanically ventilated neonates

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
    corecore