59 research outputs found
Overview of Plasma Lens Experiments and Recent Results at SPARC_LAB
Beam injection and extraction from a plasma module is still one of the
crucial aspects to solve in order to produce high quality electron beams with a
plasma accelerator. Proper matching conditions require to focus the incoming
high brightness beam down to few microns size and to capture a high divergent
beam at the exit without loss of beam quality. Plasma-based lenses have proven
to provide focusing gradients of the order of kT/m with radially symmetric
focusing thus promising compact and affordable alternative to permanent magnets
in the design of transport lines. In this paper an overview of recent
experiments and future perspectives of plasma lenses is reported
Tunable and precise two-bunch generation at FLASHForward
Beam-driven plasma-wakefield acceleration based on external injection has the
potential to significantly reduce the size of future accelerators. Stability
and quality of the acceleration process substantially depends on the incoming
bunch parameters. Precise control of the current profile is essential for
optimising energy-transfer efficiency and preserving energy spread. At the
FLASHForward facility, driver--witness bunch pairs of adjustable bunch length
and separation are generated by a set of collimators in a dispersive section,
which enables fs-level control of the longitudinal bunch profile. The design of
the collimator apparatus and its commissioning is presented.Comment: 7 pages, 5 figures, to be published in the proceedings of the 4th
European Advanced Accelerator Concepts Workshop, 15-21 September 2019, La
Biodola Bay, Isola d'Elba, Ital
A high transformer ratio scheme for PITZ PWFA experiments
In the field of plasma wakefield acceleration (PWFA) sig-nificant progress has been made throughout the recent years.However, an important issue in building plasma based ac-celerators that provide particle bunches suitable for userapplications will be a high transformer ratio, i.e. the ra-tio between maximum accelerating field in the witness andmaximum decelerating fields in the driver bunch. The trans-former ratio for symmetrical bunches in an overdense plasmais naturally limited to 2. Theory and simulations show thatthis limit can be exceeded using asymmetrical bunches. Ex-perimentally this was proven in RF-structures, but not inPWFA. To study transformer ratios above this limit in thelinear regime of a plasma wake, an experimental schemetailored to the unique capabilities of the Photoinjector TestFacility at DESY Zeuthen site (PITZ), a 25-MeV electronaccelerator, is being investigated. The numerical simula-tions of beam transport and plasma wakefields, as well aspreparatory studies on the photocathode laser system andplasma sources are presented
FLASHForward: plasma wakefield accelerator science for high-average-power applications.
The FLASHForward experimental facility is a high-performance test-bed for precision plasma wakefield research, aiming to accelerate high-quality electron beams to GeV-levels in a few centimetres of ionized gas. The plasma is created by ionizing gas in a gas cell either by a high-voltage discharge or a high-intensity laser pulse. The electrons to be accelerated will either be injected internally from the plasma background or externally from the FLASH superconducting RF front end. In both cases, the wakefield will be driven by electron beams provided by the FLASH gun and linac modules operating with a 10 Hz macro-pulse structure, generating 1.25 GeV, 1 nC electron bunches at up to 3 MHz micro-pulse repetition rates. At full capacity, this FLASH bunch-train structure corresponds to 30 kW of average power, orders of magnitude higher than drivers available to other state-of-the-art LWFA and PWFA experiments. This high-power functionality means FLASHForward is the only plasma wakefield facility in the world with the immediate capability to develop, explore and benchmark high-average-power plasma wakefield research essential for next-generation facilities. The operational parameters and technical highlights of the experiment are discussed, as well as the scientific goals and high-average-power outlook
Eupraxia, a step toward a plasma-wakefield based accelerator with high beam quality
The EuPRAXIA project aims at designing the world's first accelerator based on advanced plasma-wakefield techniques to deliver 5 GeV electron beams that simultaneously have high charge, low emittance and low energy spread, which are required for applications by future user communities. Meeting this challenging objective will only be possible through dedicated effort. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European research institutes. This enables selection of the most appropriate methods for solving each particular problem. The specific challenge of generating, extracting and transporting high charge beams, while maintaining the high quality needed for user applications, are being tackled using innovative approaches. This article highlights preliminary results obtained by the EuPRAXIA collaboration, which also exhibit the required laser and plasma parameters
Status of the Horizon 2020 EuPRAXIA conceptual design study
The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to free-electron laser pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for high-energy physics detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure
Status of the Horizon 2020 EuPRAXIA conceptual design study
The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to free-electron laser pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for high-energy physics detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure
EuPRAXIA - A compact, cost-efficient particle and radiation source
Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") aims to overcome the first three of these hurdles by developing a conceptual design for a first international user facility based on plasma acceleration. In this paper we report on the main features, simulation studies and potential applications of this future research infrastructure
Erratum to: EuPRAXIA Conceptual Design Report – Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8
International audienceThe online version of the original article can be found at http://https://doi.org/10.1140/epjst/e2020-000127-8</A
- …
