32 research outputs found

    Large-vscale hydrogen production and storage technologies: Current status and future directions

    Get PDF
    This is an accepted manuscript of an article published by Elsevier in International Journal of Hydrogen Energy on 13/11/2020, available online: https://doi.org/10.1016/j.ijhydene.2020.10.110 The accepted version of the publication may differ from the final published version.Over the past years, hydrogen has been identified as the most promising carrier of clean energy. In a world that aims to replace fossil fuels to mitigate greenhouse emissions and address other environmental concerns, hydrogen generation technologies have become a main player in the energy mix. Since hydrogen is the main working medium in fuel cells and hydrogen-based energy storage systems, integrating these systems with other renewable energy systems is becoming very feasible. For example, the coupling of wind or solar systems hydrogen fuel cells as secondary energy sources is proven to enhance grid stability and secure the reliable energy supply for all times. The current demand for clean energy is unprecedented, and it seems that hydrogen can meet such demand only when produced and stored in large quantities. This paper presents an overview of the main hydrogen production and storage technologies, along with their challenges. They are presented to help identify technologies that have sufficient potential for large-scale energy applications that rely on hydrogen. Producing hydrogen from water and fossil fuels and storing it in underground formations are the best large-scale production and storage technologies. However, the local conditions of a specific region play a key role in determining the most suited production and storage methods, and there might be a need to combine multiple strategies together to allow a significant large-scale production and storage of hydrogen.Published versio

    Application of high performance column liquid chromatography in reversed phase to separation and pre-identification ingredients of hydrophilic mixtures after alkaline hydrolysis of lignocellulosic biomass

    No full text
    Wzrost konsumpcji paliw kopalnych, ich pozyskiwanie oraz eksploatacja niesie ze sobą wiele zagrożeń dla środowiska, dlatego alternatywnym źródłem energii stają się biopaliwa, w tym bio-wodór pozyskiwany w konwersji biomasy ligno-celulozowej, która poddawana jest obróbce wstępnej. Najczęściej wykorzystywaną metodą obróbki wstępnej jest hydroliza alkaliczna, podczas której powstaję bardzo dużo produktów ubocznych, nieprzydatnych do wytwarzania paliw, szczególnie powstałych z hydrolizy ligniny. Najczęściej wykorzystywaną techniką identyfikacji i oznaczania składu hydrolizatów biomasy ligno-celulozowej jest chromatografia cieczowa realizowana w różnych układach faz oraz z wykorzystaniem elucji gradientowej. W przypadku badania hydrolizatów zawierających hydrofobowe składniki, najbardziej korzystne wydają się warunki odwróconych układów faz – RP-HPLC. W niniejszej pracy porównano dwie metodyki wysokosprawnej kolumnowej chromatografii cieczowej w odwróconych układach faz (RP-HPLC) do rozdzielania i wstępnej identyfikacji składników hydrofilowych mieszanin po hydrolizie zasadowej biomasy lignocelulozowej, w celu optymalizacji procesu konwersji biomasy ligno-celulozowej (BMLC) do uzyskania najlepszej efektywności procesu hydrolizy. Wyniki tych badań powinny doprowadzić w przyszłości do procedur pozyskania ubocznych produktów, powstających podczas procesu hydrolizy BMLC, przydatnych użytkowo. Konieczne będą badania uzupełniające, wykonywane w warunkach dwu-wymiarowej elucyjnej gradientowej kolumnowej wysokosprawnej chromatografii cieczowej, z uwzględnieniem spektrometrii Mas (MS), oprócz detektora spektrofotometrycznego z detektorem typu DAD (Diode Array) - 2D-Grad-HPLC-UV-VIS-DAD / MS.The increase in the consumption of fossil fuels, their acquisition and exploitation carries a lot of threats to the environment, therefore an alternative source of energy are biofuels, including biohydrogen obtained in the conversion of ligno-cellulosic biomass, which undergoes pre-treatment. The most frequently used method of pre-treatment is alkaline hydrolysis, during which a lot of by-products are generated, unsuitable for the production of fuels, especially those resulting from hydrolysis of lignin. The most commonly used technique for identifying and determining the composition of lignocellulose biomass hydrolysates is liquid chromatography carried out in various phase systems and using gradient elution. In the case of testing hydrolysates containing hydrophobic components, the conditions of reversed phase systems - RP-HPLC seem to be most favorable. This paper compares two methods of high performance reverse phase column chromatography (RP-HPLC) for the separation and initial identification of components of hydrophilic mixtures after basic hydrolysis of lignocellulose biomass, in order to optimize the process of converting lignocellulose biomass (BMLC) to the best the effectiveness of the hydrolysis process. The results of these tests should lead in the future to procedures for obtaining by-products of BMLC hydrolysis which are useful for use. Supplementary tests will be required, performed in two-dimensional, elution, gradient, columnar high performance liquid chromatography, including Mas (MS) spectrometry, in addition to a spectrophotometric detector with a DAD detector (Diode Array) - 2D-Grad-HPLC-UV-VISDAD / MS

    Effects of the acid additive to the eluent on the chromatographic parameters of separation of polyphenols using reversed phase liquid chromatography (RP-HPLC)

    No full text
    Chromatografia cieczowa jest jedną z technik najczęściej wykorzystywanych w badaniach składu mieszanin, a także do wydzielania czystych składników z mieszanin w postaci frakcji eluatu. Z punktu widzenia współczesnej chemii, farmakologii, a także medycyny, czy biotechnologii, chromatografia pełni ważną rolę, w zakresie analityki jakościowej i ilościowej. Dzięki możliwości otrzymywania naturalnych składników biologicznie czynnych w czystej postaci z ekstraktów pochodzenia naturalnego, jak i składników mieszanin po syntezie organicznej, ma też ważne znaczenie w skali preparatywnej, i coraz większe, w skali procesowej. W celu zapewnienia efektywności procesu konieczne jest dobranie optymalnych warunków realizacji operacji rozdzielania, detekcji oraz kolekcji frakcji, w zależności od właściwości fizykochemicznych składników rozdzielanej mieszaniny. Niniejsza praca dotyczy badań nad optymalizacją warunków stosowanych przy rozdzielaniu składników jednej z grup związków chemicznych stanowiących metabolity roślinne – polifenole. W pracy zbadano wpływ na retencję, selektywność i sprawność rozdzielania, w tym także na symetrię pików, poprzez zastosowanie dodatków do eluentu w postaci kwasów (HCl, H3PO4, H2SO4, CH3COOH, TFA), do rozdzielania wybranych, naturalnie występujących materiale roślinnym polifenoli w warunkach RP HPLC. W rozdzielaniu peptydów w układach RP, w tym, w proteomice, najczęściej używanym modyfikatorem fazy ruchomej, jest kwas trifluorooctowy (TFA). Spełnia on wówczas dwie funkcje:- ogranicza kwaśną dysocjację peptydu (na tzw. „C-końcu”), co zwiększa poziom hydrofobowości molekuł; - solwatuje sprotonowane lub spolaryzowane, dodatnio naładowane fragmenty cząsteczki peptydu lub białka ujemnymi jonami zdysocjowanego kwasu, powodując wyraźne dodatkowe podwyższenie hydrofobowości rozdzielanych cząsteczek. W przypadku polifenoli i warunków RP, obecny w eluencie kwas, powoduje jedynie cofnięcie dysocjacji elektrolitycznej rozdzielanych mniej lub bardziej kwaśnych związków chemicznych. Wpływa to na wyraźny wzrost hydrofobowości cząsteczek. Zwiększenie hydrofobowości skutkuje wzrostem współczynnika retencji, poprawą symetrii pików i lepszym rozdzieleniem składników mieszaniny w stosunków do warunków rozdzielania bez dodatku kwasu do eluentu. Badania tej pracy potwierdzają konieczność dodania kwasu do eluentu, w przypadku stosowania warunków faz odwróconych (RP). Pokazują, że każdy z badanych kwasów powoduje korzystne efekty, jednak, najbardziej korzystne - zwłaszcza dla celów analityki - okazuje się stosowanie niewielkiego dodatku kwasu siarkowego (VI).Liquid chromatography is the one of commonly used technique in research of mixture composition, and also for separation of pure components form of eluate fractions. From the standpoint of modern chemistry, pharmacology, medicine or biotechnology, chromatography plays an significant role in the field of qualitative and quantitative analysis. Additionally, through the possibility of isolation from natural origin extracts the biologically active components in its pure form, as well as the components of the mixture after organic synthesis, chromatography is important technique, which can be used in preparative and also in process scale. In order to provide the effectiveness of the process, it is necessary to select the optimum conditions of the separation, detection and collection of fractions, which depend on the physiochemical properties of separated components constituting the mixture. This paper, include the research related to optimization of chromatographic conditions, applied for the separation of the one group of chemical compounds, namely plant metabolites – polyphenols. In this research, effects of retention, separation selectivity and efficiency, including the symmetry of peaks, by applying the additive to the eluent in the form of acids (HCl, H3PO4, H2SO4, CH3COOH, TFA) for separation naturally occurring in plant polyphenols under RP-HPLC conditions was investigated. In the separation of peptides under RP conditions, including proteomics, the most commonly used acidic modifier is trifluoroacetic acid (TFA). It meets two functions: - reduces the acid dissociation of the peptide (on the so-called “C-end”), which results in an increase hydrophobicity of the molecules; - causes the salvation of the protonated or positively polarized fragments of the peptide or protein molecule by negative ions dissociated acid, resulting in a noticeable increase hyrophobicity of separated molecules. In the case of polyphenols and RP conditions, the presence of acid in the eluent, cause only the withdrawal of electrolytic dissociation of separated acidic compounds. This can affect the significant increase in the hydrophobicity of the molecules. In addition, increasing hydrophobicity resulting in increase the retention rate, improvement of peak symmetry and better separation of mixture components, regarding to separation without the addition of acid to the eluent. Research, carried out in this study, confirm that it is necessary to use acid additive to the eluent, in the case of reversed phase (RP) conditions. Indicate that each of tested acids results in beneficial effects, however, the most preferred - especially for the purpose of analysis – turns out a small addition of sulfuric acid (VI)

    Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes

    No full text
    Lignocellulosic biomass is an abundant and renewable resource that potentially contains large amounts of energy. It is an interesting alternative for fossil fuels, allowing the production of biofuels and other organic compounds. In this paper, a review devoted to the processing of lignocellulosic materials as substrates for fermentation processes is presented. The review focuses on physical, chemical, physicochemical, enzymatic, and microbiologic methods of biomass pretreatment. In addition to the evaluation of the mentioned methods, the aim of the paper is to understand the possibilities of the biomass pretreatment and their influence on the efficiency of biofuels and organic compounds production. The effects of different pretreatment methods on the lignocellulosic biomass structure are described along with a discussion of the benefits and drawbacks of each method, including the potential generation of inhibitory compounds for enzymatic hydrolysis, the effect on cellulose digestibility, the generation of compounds that are toxic for the environment, and energy and economic demand. The results of the investigations imply that only the stepwise pretreatment procedure may ensure effective fermentation of the lignocellulosic biomass. Pretreatment step is still a challenge for obtaining cost-effective and competitive technology for large-scale conversion of lignocellulosic biomass into fermentable sugars with low inhibitory concentration

    Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis

    No full text
    The need to pre-treat lignocellulosic biomass prior to dark fermentation results primarily from the composition of lignocellulose because lignin hinders the processing of hard wood towards useful products. Hence, in this work a two-step approach for the pre-treatment of energy poplar, including alkaline pre-treatment and enzymatic saccharification followed by fermentation has been studied. Monoethanolamine (MEA) was used as the alkaline catalyst and diatomite immobilized bed enzymes were used during saccharification. The response surface methodology (RSM) method was used to determine the optimal alkaline pre-treatment conditions resulting in the highest values of both total released sugars (TRS) yield and degree of lignin removal. Three variable parameters (temperature, MEA concentration, time) were selected to optimize the alkaline pre-treatment conditions. The research was carried out using the Box-Behnken design. Additionally, the possibility of the re-use of both alkaline as well as enzymatic reagents was investigated. Obtained hydrolysates were subjected to dark fermentation in batch reactors performed by Enterobacter aerogenes ATCC 13048 with a final result of 22.99 mL H2/g energy poplar (0.6 mol H2/mol TRS)

    Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis

    No full text
    Pre-treatment is a significant step in the production of second-generation biofuels from waste lignocellulosic materials. Obtaining biofuels as a result of fermentation processes requires appropriate pre-treatment conditions ensuring the highest possible degree of saccharification of the feed material. An influence of the following process parameters were investigated for alkaline pre-treatment of Salix viminalis L.: catalyst concentration (NaOH), temperature, pre-treatment time and granulation. For this purpose, experiments were carried out in accordance to the Box-Behnken design for four factors. In the saccharification process of the pre-treated biomass, cellulolytic enzymes immobilized on diatomaceous earth were used. Based on the obtained results, a mathematical model for the optimal conditions of alkaline pre-treatment prediction is proposed. The optimal conditions of alkaline pre-treatment are established as follows: granulation 0.75 mm, catalyst concentration 7%, pre-treatment time 6 h and temperature 65 °C if the saccharification efficiency and cost analysis are considered. An influence of the optimized pre-treatment on both the chemical composition and structural changes for six various lignocellulosic materials (energetic willow, energetic poplar, beech, triticale, meadow grass, corncobs) was investigated. SEM images of raw and pre-treated biomass samples are included in order to follow the changes in the biomass structure during hydrolysis

    Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation

    No full text
    This paper concerns the comparison of the efficiency of two-stage hydrolysis processes, i.e., alkaline pre-treatment and acid hydrolysis, as well as alkaline pre-treatment followed by enzymatic hydrolysis, carried out in order to obtain reducing sugars from triticale straw. For each of the analyzed systems, the optimization of the processing conditions was carried out with respect to the glucose yield. For the alkaline pre-treatment, an optimal catalyst concentration was selected for constant values of temperature and pre-treatment time. For enzymatic hydrolysis, optimal process time and concentration of the enzyme preparation were determined. For the acidic hydrolysis, performed with 85% phosphoric acid, the optimum temperature and hydrolysis time were determined. In the hydrolysates obtained after the two-stage treatment, the concentration of reducing sugars was determined using HPLC. The obtained hydrolysates were subjected to ethanol fermentation. The concentrations of fermentation inhibitors are given and their effects on the alcoholic fermentation efficiency are discussed
    corecore