11 research outputs found

    The effect of temperature and substrate quality on the carbon use efficiency of saprotrophic decomposition

    Get PDF
    Background and aims: Mineralization of soil organic matter (SOM) constitutes a major carbon flux to the atmosphere. The carbon use efficiency (CUE) of the saprotrophic microorganisms mineralizing SOM is integral for soil carbon dynamics. Here we investigate how the CUE is affected by temperature, metabolic conditions, and the molecular complexity of the substrate. Methods: We incubated O-horizon soil samples (with either 13C–glucose or 13C–cellulose) from a boreal coniferous forest at 4, 9, 14, and 19 °C, and calculated CUEs based on the amount of 13C–CO2and 13C–labelled microbial biomass produced. The effects of substrate, temperature, and metabolic conditions (representing unlimited substrate supply and substrate limitation) on CUE were evaluated. Results: CUE from metabolizing glucose was higher as compared to cellulose. A slight decrease in CUE with increasing temperature was observed in glucose amended samples (but only in the range 9–19 °C), but not in cellulose amended samples. CUE differed significantly with metabolic conditions, i.e. CUE was higher during unlimited growth conditions as compared to conditions with substrate limitation. Conclusions: We conclude that it is integral to account for both differences in CUE during different metabolic phases, as well as complexity of substrate, when interpreting temperature dependence on CUE in incubation studies

    Boreal tree species affect soil organic matter composition and saprotrophic mineralization rates

    No full text
    Aims: To investigate how different tree species affect the composition of SOM and its mineralization in boreal forest ecosystems. Methods: We used pyrolysis GC-MS for molecular-level characterization of the SOM formed under five common boreal tree species at a replicated field experiment similar to 50years after plantation. We incubated soil samples at 4, 9, 14 and 19 degrees C and measured inherent CO2 production and substrate-induced respiration. We then evaluated if the saprotrophic microbial activity and its temperature sensitivity was controlled by the SOM composition. Results: The molecular composition of the SOM emerged as key factor influencing SOM properties in plots with different tree species. Most of the variance in the SOM content was explained by the organo-chemical composition of the SOM. More importantly, the fraction of the microbial community able to utilize the native SOM was largely controlled by the SOM organo-chemical composition. Temperature sensitivity of CO2 production (Q(10)) was not explained by SOM composition. However, the microbial access to different SOM pools varied with temperature. Conclusions: These results bridge the gap between the paradigms of short-term litter and long-term SOM decomposition showing that, on an intermediate timescale (similar to 50 years), boreal tree species affect SOM molecular composition and saprotrophic mineralization rates

    Landscape constraints on mire lateral expansion

    Get PDF
    Little is known about the long-term expansion of mire ecosystems, despite their importance in the global carbon and hydrogeochemical cycles. It has been firmly established that mires do not expand linearly over time. Despite this, mires are often assumed to have expanded at a constant rate after initiation simply for lack of a better understanding. There has not yet been a serious attempt to determine the rate and drivers of mire expansion at the regional, or larger spatial scales. Here we make use of a natural chronosequence, spanning the Holocene, which is provided by the retreating coastline of Northern Sweden. By studying an isostatic rebound area we can infer mire expansion dynamics by looking at the portion of the landscape where mires become progressively scarce as the land becomes younger. Our results confirms that mires expanded non-linearly across the landscape and that their expansion is related to the availability of suitably wet areas, which, in our case, depends primarily on the hydro-edaphic properties of the landscape. Importantly, we found that mires occupied the wettest locations in the landscape within only one to two thousand years, while it took mires three to four thousand years to expand into slightly drier areas. Our results imply that the lateral expansion of mires, and thus peat accumulation is a non-linear process, occurring at different rates depending, above all else, on the wetness of the landscape

    Catchment characteristics control boreal mire nutrient regime and vegetation patterns over ~5000 years of landscape development

    No full text
    Vegetation holds the key to many properties that make natural mires unique, such as surface microtopography, high biodiversity values, effective carbon sequestration and regulation of water and nutrient fluxes across the landscape. Despite this, landscape controls behind mire vegetation patterns have previously been poorly described at large spatial scales, which limits the understanding of basic drivers underpinning mire ecosystem services. We studied catchment controls on mire nutrient regimes and vegetation patterns using a geographically constrained natural mire chronosequence along the isostatically rising coastline in Northern Sweden. By comparing mires of different ages, we can partition vegetation patterns caused by long-term mire succession (<5000 years) and present-day vegetation responses to catchment eco-hydrological settings. We used the remote sensing based normalized difference vegetation index (NDVI) to describe mire vegetation and combined peat physicochemical measures with catchment properties to identify the most important factors that determine mire NDVI. We found strong evidence that mire NDVI depends on nutrient inputs from the catchment area or underlying mineral soil, especially concerning phosphorus and potassium concentrations. Steep mire and catchment slopes, dry conditions and large catchment areas relative to mire areas were associated with higher NDVI. We also found long-term successional patterns, with lower NDVI in older mires. Importantly, the NDVI should be used to describe mire vegetation patterns in open mires if the focus is on surface vegetation, since the canopy cover in tree-covered mires completely dominated the NDVI signal. With our study approach, we can quantitatively describe the connection between landscape properties and mire nutrient regime. Our results confirm that mire vegetation responds to the upslope catchment area, but importantly, also suggest that mire and catchment aging can override the role of catchment influence. This effect was clear across mires of all ages, but was strongest in younger mires

    Research data supporting "Microbial mineralization of cellulose in frozen soils"

    No full text
    Research data supporting "Microbial mineralization of cellulose in frozen soils". The files uploaded contain solid state and liquid state NMR data in TOPSPIN, Bruker format. <div>A word document contains the NMR_data_key information.<br></div><div>An Excel file summarizes the data from NMR and GC experiments and is the base of the figures generated for the manuscript.</div

    The Kulbäcksliden Research Infrastructure: a unique setting for northern peatland studies

    No full text
    Boreal peatlands represent a biogeochemically unique and diverse environment in high-latitude landscape. They represent a long-term globally significant sink for carbon dioxide and a source of methane, hence playing an important role in regulating the global climate. There is an increasing interest in deciphering peatland biogeochemical processes to improve our understanding of how anthropogenic and climate change effects regulate the peatland biogeochemistry and greenhouse gas balances. At present, most studies investigating land-atmosphere exchanges of peatland ecosystems are commonly based on single-tower setups, which require the assumption of homogeneous conditions during upscaling to the landscape. However, the spatial organization of peatland complexes might feature large heterogeneity due to its varying underlying topography and vegetation composition. Little is known about how well single site studies represent the spatial variations of biogeochemical processes across entire peatland complexes. The recently established Kulbäcksliden Research Infrastructure (KRI) includes five peatland study sites located less than 3 km apart, thus providing a unique opportunity to explore the spatial variation in ecosystem-scale processes across a typical boreal peatland complex. All KRI sites are equipped with eddy covariance flux towers combined with installations for detailed monitoring of biotic and abiotic variables, as well as catchment-scale hydrology and hydrochemistry. Here, we review studies that were conducted in the Kulbäcksliden area and provide a description of the site characteristics as well as the instrumentation available at the KRI. We highlight the value of long-term infrastructures with ecosystem-scale and replicated experimental sites to advance our understanding of peatland biogeochemistry, hydrology, ecology, and its feedbacks on the environment and climate system.ISSN:2296-646

    Spatiotemporal variability of the gas transfer coefficient (KCO2) in boreal streams: implications for large scale estimates of CO2 evasion

    No full text
    Boreal streams represent potentially important conduits for the exchange of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere. The gas transfer coefficient of CO2 (KCO2) is a key variable in estimating this source strength, but the scarcity of measured values in lotic systems creates a risk of incorrect flux estimates even when stream gas concentrations are well known. This study used 114 independent measurements of KCO2 from 14 stream reaches in a boreal headwater system to determine and predict spatiotemporal variability in KCO2. The KCO2 values ranged from 0.001 to 0.207 min−1 across the 14 sites. Median KCO2 for a specific site was positively correlated with the slope of the stream reach, with higher gas transfer coefficients occurring in steeper stream sections. Combining slope with a width/depth index of the stream reach explained 83% of the spatial variability in KCO2. Temporal variability was more difficult to predict and was strongly site specific. Variation in KCO2, rather than pCO2, was the main determinant of stream CO2 evasion. Applying published generalized gas transfer velocities produced an error of up to 100% in median instantaneous evasion rates compared to the use of actual measured KCO2 values from our field study. Using the significant relationship to local slope, the median KCO2 was predicted for 300,000 km of watercourses (ranging in stream order 1–4) in the forested landscape of boreal/nemoral Sweden. The range in modeled stream order specific median KCO2 was 0.017–0.028 min−1 and there was a clear gradient of increasing KCO2 with lower stream order. We conclude that accurate regional scale estimates of CO2 evasion fluxes from running waters are possible, but require a good understanding of gas exchange at the water surface
    corecore