184 research outputs found

    Contrasting drivers and trends of ocean acidification in the subarctic Atlantic

    Get PDF
    The processes of warming, anthropogenic CO2 (Canth) accumulation, decreasing pHT (increasing [H+]T; concentration in total scale) and calcium carbonate saturation in the subarctic zone of the North Atlantic are unequivocal in the time-series measurements of the Iceland (IS-TS, 1985–2003) and Irminger Sea (IRM-TS, 1983–2013) stations. Both stations show high rates of Canth accumulation with diferent rates of warming, salinifcation and stratifcation linked to regional circulation and dynamics. At the IS-TS, advected and stratifed waters of Arctic origin drive a strong increase in [H+]T, in the surface layer, which is nearly halved in the deep layer (44.7± 3.6 and 25.5 ± 1.0 pmol ­kg−1 ­yr−1, respectively). In contrast, the weak stratifcation at the IRM-TS allows warming, salinifcation and Canth uptake to reach the deep layer. The acidifcation trends are even stronger in the deep layer than in the surface layer (44.2± 1.0 pmol ­kg−1 ­yr−1 and 32.6 ± 3.4 pmol ­kg−1 ­yr−1 of [H+]T, respectively). The driver analysis detects that warming contributes up to 50% to the increase in [H+]T at the IRM-TS but has a small positive efect on calcium carbonate saturation. The Canth increase is the main driver of the observed acidifcation, but it is partially dampened by the northward advection of water with a relatively low natural CO2 content.PRX18/00312, PID2019-104279GB-C21, UIDB/Multi/04326/2020, CEECINST/00114/2018info:eu-repo/semantics/publishedVersio

    Fluxes of carbon and nutrients to the Iceland Sea surface layer and inferred primary productivity and stoichiometry

    Get PDF
    This study evaluates long-term mean fluxes of carbon and nutrients to the upper 100 m of the Iceland Sea. The study utilises hydro-chemical data from the Iceland Sea time series station (68.00° N, 12.67° W), for the years between 1993 and 2006. By comparing data of dissolved inorganic carbon (DIC) and nutrients in the surface layer (upper 100 m), and a sub-surface layer (100–200 m), we calculate monthly deficits in the surface, and use these to deduce the long-term mean surface layer fluxes that affect the deficits: vertical mixing, horizontal advection, air–sea exchange, and biological activity. The deficits show a clear seasonality with a minimum in winter, when the mixed layer is at the deepest, and a maximum in early autumn, when biological uptake has removed much of the nutrients. The annual vertical fluxes of DIC and nitrate amounts to 2.9 ± 0.5 and 0.45 ± 0.09 mol m−2 yr−1, respectively, and the annual air–sea uptake of atmospheric CO2 is 4.4 ± 1.1 mol C m−2 yr−1. The biologically driven changes in DIC during the year relates to net community production (NCP), and the net annual NCP corresponds to export production, and is here calculated as 7.3 ± 1.0 mol C m−2 yr−1. The typical, median C : N ratio during the period of net community uptake is 9.0, and clearly higher than the Redfield ratio, but is varying during the season.publishedVersio

    Efficient neural decoding of self-location with a deep recurrent network

    Get PDF
    Place cells in the mammalian hippocampus signal self-location with sparse spatially stable firing fields. Based on observation of place cell activity it is possible to accurately decode an animal's location. The precision of this decoding sets a lower bound for the amount of information that the hippocampal population conveys about the location of the animal. In this work we use a novel recurrent neural network (RNN) decoder to infer the location of freely moving rats from single unit hippocampal recordings. RNNs are biologically plausible models of neural circuits that learn to incorporate relevant temporal context without the need to make complicated assumptions about the use of prior information to predict the current state. When decoding animal position from spike counts in 1D and 2D-environments, we show that the RNN consistently outperforms a standard Bayesian approach with either flat priors or with memory. In addition, we also conducted a set of sensitivity analysis on the RNN decoder to determine which neurons and sections of firing fields were the most influential. We found that the application of RNNs to neural data allowed flexible integration of temporal context, yielding improved accuracy relative to the more commonly used Bayesian approaches and opens new avenues for exploration of the neural code

    Two serious eye injuries after tampering with fireworks

    Get PDF
    Neðst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn Skoða/Opna(view/open)In this article we describe two separate cases of serious eye injuries that were the result of two teenagers´ attempts to make home-made explosives out of fireworks. They had tampered with the same brand of firework, Víti, that appears to be popular for this purpose and instructions are available on the internet. One boy got an intraocular glass splinter and underwent vitrectomy for removal. The other boy suffered burns on his corneas that were treated with amniotic membranes. In both cases the outcome was better than expected at first. The objective of this article is to draw attention to the danger of tampering with fireworks and the necessity of preventive measures to minimize the risk of serious eye injuries. Vilbergsson GR, Einarsdottir SO, Oskarsdottir SE, Olafsdottir E, Stefansson E. Two serious eye injuries after tampering with fireworks.Tveir unglingspiltar fengu meðferð á augndeild Landspítalans vegna alvarlegra augnáverka eftir fikt með heimatilbúnar sprengjur úr flugeldunum „Víti“ sem sprungu í höndunum á þeim. Annar pilturinn fékk glerflís inn í auga og þurfti glerhlaupsaðgerð til að fjarlægja flísina. Einnig fékk hann talsverða áverka á húð í andliti og á hendi. Hinn pilturinn brenndist illa á hornhimnu og í andliti. Hornhimnurnar voru meðhöndlaðar meðal annars með líknarbelgshimnu. Í báðum tilfellum fór betur en á horfðist. Tilgangur greinarinnar er að vekja athygli á hversu hættulegt fikt með flugelda getur verið. „Víti“ hefur verið vinsæll flugeldur til að fikta við og er auðvelt að finna leiðbeiningar á spjallrásum á veraldarvefnum. Æskilegt er að herða eftirlit með sölu flugelda og efla forvarnaraðgerðir, sérstaklega gagnvart börnum og unglingum

    Modeling Historic Rangeland Management and Grazing Pressures in Landscapes of Settlement

    Get PDF
    Defining historic grazing pressures and rangeland management is vital if early landscape threshold crossing and long–term trajectories of landscape change are to be properly understood. In this paper we use a new environmental simulation model, Búmodel, to assess two contrasting historical grazing landscapes in Mývatnssveit Iceland for two key periods—the colonization period (ca. Landnám, A.D. 872–1000) and the early eighteenth century A.D. Results suggest that there were spatial and temporal variations in productivity and grazing pressure within and between historic grazing areas and indicate that land degradation was not an inevitable consequence of the livestock grazing introduced with settlement. The results also demonstrate the significance of grazing and livestock management strategies in preventing overgrazing, particularly under cooler climatic conditions. The model enables detailed consideration of historic grazing management scenarios and their associated landscape pressures

    Inter-comparison of salt effect correction for δ 18 O and δ 2 H measurements in seawater by CRDS and IRMS using the gas-H 2 O equilibration method

    Get PDF
    The isotope composition of seawater is an efficient method for detecting mixing between water masses. To measure long term or large scale hydrological processes at the ocean surface, it is necessary to be able to precisely compare datasets produced by different laboratories. The oxygen and hydrogen isotope (δ18O and δ2H) composition of marine waters can be measured using isotope ratio mass spectrometry (IRMS) and near-infrared laser absorption spectroscopy (LS) techniques. The IRMS and equilibration method is thought to provide results on the activity scale, while LS provides results on the concentration scale. However, the effect of dissolved seawater salts on the measurement is not sufficiently assessed and seems sometimes contradictory in the literature. For this purpose, we made artificial seawater and a pure NaCl solution from a freshwater of known isotope composition. The solutions were measured by four different laboratories allowing us to compare the two techniques. We show that minor corrections are necessary to correct seawater measurements for the salt effect and report them on the concentration scale. Interestingly, seawater measurements using LS (type Picarro) coupled to a liner are not on the concentration scale and require a correction of ~ 0.09‰ for δ18O, while the correction is relatively less significant for δ2H (~ 0.13‰). Moreover, we found for IRMS measurements that the salt effect can differ between different laboratories but seems reproducible for a given laboratory. A natural sea water sample was then analyzed by the different laboratories participating in the study. We found that applying the corrections increases the reproducibility of the isotope measurement significantly, with inter-laboratory standard deviation decreasing from 0.06 to 0.02‰ and 0.55 to 0.23‰ for δ18O and δ2H, respectively. Thus, comparing sea water datasets produced in different laboratories requires that each laboratory carries out its own calibration with artificial seawater and presents measurements on the concentration scale

    Glyphosate and AMPA in human urine of HBM4EU-aligned studies: part B adults

    Get PDF
    Within HBM4EU, human biomonitoring (HBM) studies measuring glyphosate (Gly) and aminomethylphosphonic acid (AMPA) in urine samples from the general adult population were aligned and quality-controlled/assured. Data from four studies (ESB Germany (2015-2020); Swiss HBM4EU study (2020); DIET-HBM Iceland (2019-2020); ESTEBAN France (2014-2016)) were included representing Northern and Western Europe. Overall, median values were below the reported quantification limits (LOQs) (0.05-0.1 microg/L). The 95th percentiles (P95) ranged between 0.24 and 0.37 microg/L urine for Gly and between 0.21 and 0.38 microg/L for AMPA. Lower values were observed in adults compared to children. Indications exist for autonomous sources of AMPA in the environment. As for children, reversed dosimetry calculations based on HBM data in adults did not lead to exceedances of the ADI (proposed acceptable daily intake of EFSA for Gly 0.1 mg/kg bw/day based on histopathological findings in the salivary gland of rats) indicating no human health risks in the studied populations at the moment. However, the controversy on carcinogenicity, potential endocrine effects and the absence of a group ADI for Gly and AMPA induce uncertainty to the risk assessment. Exposure determinant analysis showed few significant associations. More data on specific subgroups, such as those occupationally exposed or living close to agricultural fields or with certain consumption patterns (vegetarian, vegan, organic food, high cereal consumer), are needed to evaluate major exposure sources

    Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 5065-5083, doi:10.5194/bg-13-5065-2016.One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of preindustrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with preindustrial conditions; however, present-day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag < 1.8) and Crassostrea gigas (Ωarag < 2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag < 1.6). At the most variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag =  1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all patterns of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.The CO2 and ocean acidification observations were funded by NOAA’s Climate Observation Division (COD) in the Climate Program Office and NOAA’s Ocean Acidification Program. The maintenance of the Stratus and WHOTS Ocean Reference Stations were also supported by NOAA COD (NA09OAR4320129). Additional support for buoy equipment, maintenance, and/or ancillary measurements was provided by NOAA through the US Integrated Ocean Observing System office: for the La Parguera buoy under a Cooperative Agreement (NA11NOS0120035) with the Caribbean Coastal Ocean Observing System, for the Chá b˘a buoy under a Cooperative Agreement (NA11NOS0120036) with the Northwest Association of Networked Ocean Observing System, for the Gray’s Reef buoy under a Cooperative Agreement (NA11NOS0120033) with the Southeast Coastal Ocean Observing Regional Association, and for the Gulf of Main buoy under a Cooperative Agreement (NA11NOS0120034) with the Northeastern Regional Association of Coastal and Ocean Observing Systems

    Is team sport the key to getting everybody active, every day? A systematic review of physical activity interventions aimed at increasing girls' participation in team sport

    Get PDF
    Background: It is estimated that 21% of boys and 16% of girls in England meet recommended physical activity guidelines. Team sport has the potential to increase physical activity levels; however, studies show that gender-based factors can influence girls’ participation in team sport. Furthermore, evidence for the effectiveness of interventions promoting team sport among girls is limited. This systematic review aimed to assess the impact of physical activity interventions on secondary school-aged girls’ (aged 11-18 years) participation in team sport and to identify potential strategies for increasing participation. Methods: Electronic databases and grey literature were systematically searched for studies of interventions targeting team sport participation among girls in the UK. Results were exported to Refworks, duplicates removed and eligible studies identified. Extracted data included: participant details, such as sample size and age; components of the intervention; outcomes assessed; and each study was quality appraised. Due to heterogeneity across studies, results were presented narratively. Results: Four studies sourced from the grey literature met the inclusion criteria. Findings suggest that physical activity interventions can encourage girls to try new sports, but evidence is limited in relation to sustained participation. Potential strategies for promoting participation included: consultation with girls, implementation of appropriate peer-leaders and friendship group strategies, early intervention and consideration of intervention setting. Conclusions: This review highlights the limited availability of evidence on the effectiveness of physical activity interventions for promoting team sport participation among girls in the UK. Findings indicate that future research is needed to improve the methodological quality of complex intervention evaluation. Physical activity interventions may have the potential to encourage girls to try team sport, but their impact on sustained participation, and subsequent physical activity outcomes, is less apparent

    The Iceland–Faroe warm-water flow towards the Arctic estimated from satellite altimetry and in situ observations

    Get PDF
    The inflow of warm and saline Atlantic water to the Arctic Mediterranean (Nordic Seas and Arctic Ocean) between Iceland and the Faroes (IF inflow) is the strongest Atlantic inflow branch in terms of volume transport and is associated with a large transport of heat towards the Arctic. The IF inflow is monitored in a section east of the Iceland–Faroe Ridge (IFR) by use of sea level anomaly (SLA) data from satellite altimetry, a method that has been calibrated by in situ observations gathered over 2 decades. Monthly averaged surface velocity anomalies calculated from SLA data were strongly correlated with anomalies measured by moored acoustic Doppler current profilers (ADCPs) with consistently higher correlations when using the reprocessed SLA data released in December 2021 rather than the earlier version. In contrast to the earlier version, the reprocessed data also had the correct conversion factor between sea level slope and surface velocity required by geostrophy. Our results show that the IF inflow crosses the IFR in two separate branches. The Icelandic branch is a jet over the Icelandic slope with average surface speed exceeding 20 cm s−1, but it is narrow and shallow with an average volume transport of less than 1 Sv (106 m3 s−1). Most of the Atlantic water crosses the IFR close to its southernmost end in the Faroese branch. Between these two branches, water from the Icelandic branch turns back onto the ridge in a retroflection with a recirculation over the northernmost bank on the IFR. Combining multi-sensor in situ observations with satellite SLA data, monthly mean volume transport of the IF inflow has been determined from January 1993 to December 2021. The IF inflow is part of the Atlantic Meridional Overturning Circulation (AMOC), which is expected to weaken under continued global warming. Our results show no weakening of the IF inflow. Annually averaged volume transport of Atlantic water through the monitoring section had a statistically significant (95 % confidence level) increasing trend of (0.12±0.10) Sv per decade. Combined with increasing temperature, this caused an increase of 13 % in the heat transport, relative to 0 ∘C, towards the Arctic of the IF inflow over the 29 years of monitoring. The near-bottom layer over most of the IFR is dominated by cold water of Arctic origin that may contribute to the overflow across the ridge. Our observations confirm a dynamic link between the overflow and the Atlantic water flow above. The results also provide support for a previously posed hypothesis that this link may explain the difficulties in reproducing observed transport variations in the IF inflow in numerical ocean models, with consequences for its predictability under climate change.</p
    corecore