58 research outputs found
Revision of the Chiapan deer mouse, Peromyscus zarhynchus, with the description of a new species
We analyzed morphometric and molecular variation among 8 populations of Peromyscus zarhynchus grouped into 5 pooled samples representing separate physiographic regions across the range of this species in Chiapas, Mexico, and western Guatemala. Mitochondrial sequence data identify 2 well-supported and reciprocally monophyletic clades, separating all Chiapas specimens from those in Guatemala. These 2 clades group as a strongly supported monophyletic lineage aligned with other members of the Peromyscus mexicanus species group. The Chiapas clade is further subdivided into 4 subclades: 1) samples from the western part of the state, 2) specimens from a single locality in Northern Chiapas, 3) all central localities, and 4) those from a single locality in Eastern Chiapas. The molecular distance in the mitochondrial cytochrome-b gene (Cytb) between the 2 major clades is relatively low (mean p-distance = 3.66%); those between the 4 Chiapas subclades are even less (mean p-distance 2.73%). Multivariate analyses of external and craniodental morphometric variables also distinguish 2 major groups, separating Guatemalan from Chiapas samples but with the latter also divided into 2 subgroups, one that segregates the Northern Chiapas sample from those distributed elsewhere in that state. The Guatemalan and Chiapas samples differ in both cranial size and shape variables. The second-level separation of samples from within Chiapas (northern versus all others) is interpreted to result from the combination of local adaptation to distinct physiographic regions and geographic isolation generated by patches of suitable habitat. We describe the Guatemalan samples as a distinct species based on their molecular and morphological uniqueness, and argue that P. zarhynchus itself is divided into definable subspecies, with the nominotypical form P. z. zarhynchus, restricted to the vicinity of its type locality (TumbalĂĄ) in Northern Chiapas, and P. z. cristobalensis with type locality of San Cristobal, over the remainder of the species range in the state
Molecular, morphological and acoustic identification of Eumops maurus and Eumops hansae (Chiroptera: Molossidae) with new reports from Central Amazonia
Eumops maurus and Eumops hansae are rarely captured Neotropical molossid bats for
which information on taxonomy, natural history, and spatial distribution are scarce.
This translates into a poor understanding of their ecology and limits the delimitation
of useful characters for their identification. Here, we describe records of these two
molossids from the Central Brazilian Amazon, providing data on their external and
craniodental morphology, DNA barcode (COI) sequences complemented by acoustic
data for the species. Morphological characters, DNA sequence data and phylogenetic
relationships within the genus Eumops were consistent with those previously described
for both species. Echolocation call characteristics did not differ significantly so as to be
useful for separating E. maurus and E. hansae from other congeners. Our records are,
respectively the first and the second for Central Amazonia as one individual previously
attributed to Eumops amazonicus from Manaus may be considered a junior synonym
for E. hansae. These new records increase the extent of the speciesâ known ranges,
partially filling in previous existing gaps in their distribution in central South America.
Our data further suggest that these molossid bats forage in a wider range of habitats
than previously thought
Gaia Early Data Release 3: Summary of the contents and survey properties
ABSTRACT: Context. We present the early installment of the third Gaia data release, Gaia EDR3, consisting of astrometry and photometry for 1.8 billion sources brighter than magnitude 21, complemented with the list of radial velocities from Gaia DR2.
Aims. A summary of the contents of Gaia EDR3 is presented, accompanied by a discussion on the differences with respect to Gaia DR2 and an overview of the main limitations which are present in the survey. Recommendations are made on the responsible use of Gaia EDR3 results.
Methods. The raw data collected with the Gaia instruments during the first 34 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium and turned into this early third data release, which represents a major advance with respect to Gaia DR2 in terms of astrometric and photometric precision, accuracy, and homogeneity.
Results. Gaia EDR3 contains celestial positions and the apparent brightness in G for approximately 1.8 billion sources. For 1.5 billion of those sources, parallaxes, proper motions, and the (GBP ? GRP) colour are also available. The passbands for G, GBP, and GRP are provided as part of the release. For ease of use, the 7 million radial velocities from Gaia DR2 are included in this release, after the removal of a small number of spurious values. New radial velocities will appear as part of Gaia DR3. Finally, Gaia EDR3 represents an updated materialisation of the celestial reference frame (CRF) in the optical, the Gaia-CRF3, which is based solely on extragalactic sources. The creation of the source list for Gaia EDR3 includes enhancements that make it more robust with respect to high proper motion stars, and the disturbing effects of spurious and partially resolved sources. The source list is largely the same as that for Gaia DR2, but it does feature new sources and there are some notable changes. The source list will not change for Gaia DR3. Conclusions. Gaia EDR3 represents a significant advance over Gaia DR2, with parallax precisions increased by 30 per cent, proper motion precisions increased by a factor of 2, and the systematic errors in the astrometry suppressed by 30-40% for the parallaxes and by a factor ~2.5 for the proper motions. The photometry also features increased precision, but above all much better homogeneity across colour, magnitude, and celestial position. A single passband for G, GBP, and GRP is valid over the entire magnitude and colour range, with no systematics above the 1% levelThe Gaia mission and data processing have financially been supported by ; the Spanish Ministry of Economy (MINECO/FEDER, UE) through grants ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, RTI2018-095076-B-C21, RTI2018-095076-B-C22, BES-2016-078499, and BES-2017-083126 and the Juan de la Cierva formaciĂłn 2015 grant FJCI-2015-2671, the Spanish Ministry of Education, Culture, and Sports through grant FPU16/03827, the Spanish Ministry of Science and Innovation (MICINN) through grant
AYA2017-89841P for project âEstudio de las propiedades de los fĂłsiles estelares en el entorno del Grupo Localâ and through grant TIN2015-65316-P for project
âComputaciĂłn de Altas Prestaciones VII
Gaia Data Release 3: Mapping the asymmetric disc of the Milky Way
With the most recent Gaia data release the number of sources with complete 6D
phase space information (position and velocity) has increased to well over 33
million stars, while stellar astrophysical parameters are provided for more
than 470 million sources, in addition to the identification of over 11 million
variable stars. Using the astrophysical parameters and variability
classifications provided in Gaia DR3, we select various stellar populations to
explore and identify non-axisymmetric features in the disc of the Milky Way in
both configuration and velocity space. Using more about 580 thousand sources
identified as hot OB stars, together with 988 known open clusters younger than
100 million years, we map the spiral structure associated with star formation
4-5 kpc from the Sun. We select over 2800 Classical Cepheids younger than 200
million years, which show spiral features extending as far as 10 kpc from the
Sun in the outer disc. We also identify more than 8.7 million sources on the
red giant branch (RGB), of which 5.7 million have line-of-sight velocities,
allowing the velocity field of the Milky Way to be mapped as far as 8 kpc from
the Sun, including the inner disc. The spiral structure revealed by the young
populations is consistent with recent results using Gaia EDR3 astrometry and
source lists based on near infrared photometry, showing the Local (Orion) arm
to be at least 8 kpc long, and an outer arm consistent with what is seen in HI
surveys, which seems to be a continuation of the Perseus arm into the third
quadrant. Meanwhile, the subset of RGB stars with velocities clearly reveals
the large scale kinematic signature of the bar in the inner disc, as well as
evidence of streaming motions in the outer disc that might be associated with
spiral arms or bar resonances. (abridged
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Reactive oxygen species and male reproductive hormones
Reports of the increasing incidence of male infertility paired with decreasing semen quality have triggered studies
on the effects of lifestyle and environmental factors on the male reproductive potential. There are numerous exogenous
and endogenous factors that are able to induce excessive production of reactive oxygen species (ROS) beyond that of
cellular antioxidant capacity, thus causing oxidative stress. In turn, oxidative stress negatively affects male reproductive
functions and may induce infertility either directly or indirectly by affecting the hypothalamus-pituitary-gonadal (HPG)
axis and/or disrupting its crosstalk with other hormonal axes. This review discusses the important exogenous and
endogenous factors leading to the generation of ROS in different parts of the male reproductive tract. It also highlights
the negative impact of oxidative stress on the regulation and cross-talk between the reproductive hormones. It further
describes the mechanism of ROS-induced derangement of male reproductive hormonal profiles that could ultimately
lead to male infertility. An understanding of the disruptive effects of ROS on male reproductive hormones would
encourage further investigations directed towards the prevention of ROS-mediated hormonal imbalances, which in turn
could help in the management of male infertility
Gaia Focused Product Release: Sources from Service Interface Function image analysis
Context. Gaiaâs readout window strategy is challenged by very dense fields in the sky. Therefore, in addition to standard Gaia observations, full Sky Mapper (SM) images were recorded for nine selected regions in the sky. A new software pipeline exploits these Service Interface Function (SIF) images of crowded fields (CFs), making use of the availability of the full two-dimensional (2D) information. This new pipeline produced half a million additional Gaia sources in the region of the omega Centauri (Ï Cen) cluster, which are published with this Focused Product Release. We discuss the dedicated SIF CF data reduction pipeline, validate its data products, and introduce their Gaia archive table.
Aims. Our aim is to improve the completeness of the Gaia source inventory in a very dense region in the sky, Ï Cen. Methods. An adapted version of Gaiaâs Source Detection and Image Parameter Determination software located sources in the 2D SIF CF images. These source detections were clustered and assigned to new SIF CF or existing Gaia sources by Gaia s cross-match software. For the new sources, astrometry was calculated using the Astrometric Global Iterative Solution software, and photometry was obtained in the Gaia DR3 reference system. We validated the results by comparing them to the public Gaia DR3 catalogue and external Hubble Space Telescope data. Results. With this Focused Product Release, 526 587 new sources have been added to the Gaia catalogue in Ï Cen. Apart from positions and brightnesses, the additional catalogue contains parallaxes and proper motions, but no meaningful colour information. While SIF CF source parameters generally have a lower precision than nominal Gaia sources, in the cluster centre they increase the depth of the combined catalogue by three magnitudes and improve the source density by a factor of ten. Conclusions. This first SIF CF data publication already adds great value to the Gaia catalogue. It demonstrates what to expect for the fourth Gaia catalogue, which will contain additional sources for all nine SIF CF regions
Gaia Focused Product Release: Asteroid orbital solution: Properties and assessment
Context. We report the exploitation of a sample of Solar System observations based on data from the third Gaia Data Release (Gaia DR3) of nearly 157 000 asteroids. It extends the epoch astrometric solution over the time coverage planned for the Gaia DR4, which is not expected before the end of 2025. This data set covers more than one full orbital period for the vast majority of these asteroids. The orbital solutions are derived from the Gaia data alone over a relatively short arc compared to the observation history of many of these asteroids. Aims. The work aims to produce orbital elements for a large set of asteroids based on 66 months of accurate astrometry provided by Gaia and to assess the accuracy of these orbital solutions with a comparison to the best available orbits derived from independent observations. A second validation is performed with accurate occultation timings. Methods. We processed the raw astrometric measurements of Gaia to obtain astrometric positions of moving objects with 1D sub-mas accuracy at the bright end. For each asteroid that we matched to the data, an orbit fitting was attempted in the form of the best fit of the initial conditions at the median epoch. The force model included Newtonian and relativistic accelerations to derive the observation equations, which were solved with a linear least-squares fit. Results. Orbits are provided in the form of state vectors in the International Celestial Reference Frame for 156 764 asteroids, including near-Earth objects, main-belt asteroids, and Trojans. For the asteroids with the best observations, the (formal) relative uncertainty Ïa/a is better than 10â10. Results are compared to orbits available from the Jet Propulsion Laboratory and MPC. Their orbits are based on much longer data arcs, but from positions of lower quality. The relative differences in semi-major axes have a mean of 5 Ă 10â10 and a scatter of 5 Ă 10â9
Gaia Focused Product Release: Spatial distribution of two diffuse interstellar bands
Diffuse interstellar bands (DIBs) are absorption features seen in optical and infrared spectra of stars and extragalactic objects that are probably caused by large and complex molecules in the galactic interstellar medium (ISM). Here we investigate the Galactic distribution and properties of two DIBs identified in almost six million stellar spectra collected by the Gaia Radial Velocity Spectrometer. These measurements constitute a part of the Gaia Focused Product Release to be made public between the Gaia DR3 and DR4 data releases. In order to isolate the DIB signal from the stellar features in each individual spectrum, we identified a set of 160 000 spectra at high Galactic latitudes (|b| â©Ÿ 65°) covering a range of stellar parameters which we consider to be the DIB-free reference sample. Matching each target spectrum to its closest reference spectra in stellar parameter space allowed us to remove the stellar spectrum empirically, without reference to stellar models, leaving a set of six million ISM spectra. Using the starâs parallax and sky coordinates, we then allocated each ISM spectrum to a voxel (VOlume piXEL) on a contiguous three-dimensional grid with an angular size of 1.8° (level 5 HEALPix) and 29 unequally sized distance bins. Identifying the two DIBs at 862.1 nm (λ862.1) and 864.8 nm (λ864.8) in the stacked spectra, we modelled their shapes and report the depth, central wavelength, width, and equivalent width (EW) for each, along with confidence bounds on these measurements. We then explored the properties and distributions of these quantities and compared them with similar measurements from other surveys. Our main results are as follows: (1) the strength and spatial distribution of the DIB λ862.1 are very consistent with what was found in Gaia DR3, but for this work we attained a higher signal-to-noise ratio in the stacked spectra to larger distances, which allowed us to trace DIBs in the outer spiral arm and beyond the ScutumâCentaurus spiral arm; (2) we produced an all-sky map below ±65° of Galactic latitude to ~4000 pc of both DIB features and their correlations; (3) we detected the signals of DIB λ862.1 inside the Local Bubble (âČ200 pc); and (4) there is a reasonable correlation with the dust reddening found from stellar absorption and EWs of both DIBs with a correlation coefficient of 0.90 for λ862.1 and 0.77 for λ864.8
Gaia Focused Product Release: Radial velocity time series of long-period variables
Context. The third Gaia Data Release (DR3) provided photometric time series of more than 2 million long-period variable (LPV) candidates. Anticipating the publication of full radial-velocity data planned with Data Release 4, this Focused Product Release (FPR) provides radial-velocity time series for a selection of LPV candidates with high-quality observations. Aims. We describe the production and content of the Gaia catalog of LPV radial-velocity time series, and the methods used to compute the variability parameters published as part of the Gaia FPR. Methods. Starting from the DR3 catalog of LPV candidates, we applied several filters to construct a sample of sources with high-quality radial-velocity measurements. We modeled their radial-velocity and photometric time series to derive their periods and amplitudes, and further refined the sample by requiring compatibility between the radial-velocity period and at least one of the G, GBP, or GRP photometric periods. Results. The catalog includes radial-velocity time series and variability parameters for 9614 sources in the magnitude range 6 âČ G/mag âČ 14, including a flagged top-quality subsample of 6093 stars whose radial-velocity periods are fully compatible with the values derived from the G, GBP, and GRP photometric time series. The radial-velocity time series contain a mean of 24 measurements per source taken unevenly over a duration of about three years. We identify the great majority of the sources (88%) as genuine LPV candidates, with about half of them showing a pulsation period and the other half displaying a long secondary period. The remaining 12% of the catalog consists of candidate ellipsoidal binaries. Quality checks against radial velocities available in the literature show excellent agreement. We provide some illustrative examples and cautionary remarks. Conclusions. The publication of radial-velocity time series for almost ten thousand LPV candidates constitutes, by far, the largest such database available to date in the literature. The availability of simultaneous photometric measurements gives a unique added value to the Gaia catalog
- âŠ