10,115,575 research outputs found

    Controllable pi junction in a Josephson quantum-dot device with molecular spin

    Full text link
    We consider a model for a single molecule with a large frozen spin sandwiched in between two BCS superconductors at equilibrium, and show that this system has a π\pi junction behavior at low temperature. The π\pi shift can be reversed by varying the other parameters of the system, e.g., temperature or the position of the quantum dot level, implying a controllable π\pi junction with novel application as a Josephson current switch. We show that the mechanism leading to the π\pi shift can be explained simply in terms of the contributions of the Andreev bound states and of the continuum of states above the superconducting gap. The free energy for certain configuration of parameters shows a bistable nature, which is a necessary pre-condition for achievement of a qubit

    Emergence of superfluid transport in a dynamical system of ultracold atoms

    Full text link
    The dynamics of a Bose-Einstein condensate is studied theoretically in a combined periodic plus harmonic external potential. Different dynamical regimes of stable and unstable collective dipole and Bloch oscillations are analysed in terms of a quantum mechanical pendulum model. Nonlinear interactions are shown to counteract quantum-mechanical dephasing and lead to phase-coherent, superfluid transport

    Quantifying bid-ask spreads in the Chinese stock market using limit-order book data: Intraday pattern, probability distribution, long memory, and multifractal nature

    Full text link
    The statistical properties of the bid-ask spread of a frequently traded Chinese stock listed on the Shenzhen Stock Exchange are investigated using the limit-order book data. Three different definitions of spread are considered based on the time right before transactions, the time whenever the highest buying price or the lowest selling price changes, and a fixed time interval. The results are qualitatively similar no matter linear prices or logarithmic prices are used. The average spread exhibits evident intraday patterns consisting of a big L-shape in morning transactions and a small L-shape in the afternoon. The distributions of the spread with different definitions decay as power laws. The tail exponents of spreads at transaction level are well within the interval (2,3)(2,3) and that of average spreads are well in line with the inverse cubic law for different time intervals. Based on the detrended fluctuation analysis, we found the evidence of long memory in the bid-ask spread time series for all three definitions, even after the removal of the intraday pattern. Using the classical box-counting approach for multifractal analysis, we show that the time series of bid-ask spread does not possess multifractal nature.Comment: 8 EPJ pages including 7 eps figure

    Josephson oscillation of a superfluid Fermi gas

    Full text link
    Using the complete numerical solution of a time-dependent three-dimensional mean-field model we study the Josephson oscillation of a superfluid Fermi gas (SFG) at zero temperature formed in a combined axially-symmetric harmonic plus one-dimensional periodic optical-lattice (OL) potentials after displacing the harmonic trap along the axial OL axis. We study the dependence of Josephson frequency on the strength of the OL potential. The Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti et al. [Science 293 (2001) 843] for a Bose-Einstein condensate and of the experiment of Pezze et al. [Phys. Rev. Lett. 93 (2004) 120401] for an ideal Fermi gas. We demonstrate a breakdown of Josephson oscillation in the SFG for a large displacement of the harmonic trap. These features of Josephson oscillation of a SFG can be tested experimentally.Comment: 7 pages, 10 figure

    Superconductivity in a two dimensional extended Hubbard model

    Full text link
    The Roth's two-pole approximation has been used by the present authors to investigate the role of dpd-p hybridization in the superconducting properties of an extended dpd-p Hubbard model. Superconductivity with singlet dx2y2d_{x^2-y^2}-wave pairing is treated by following Beenen and Edwards formalism. In this work, the Coulomb interaction, the temperature and the superconductivity have been considered in the calculation of some relevant correlation functions present in the Roth's band shift. The behavior of the order parameter associated with temperature, hybridization, Coulomb interaction and the Roth's band shift effects on superconductivity are studied.Comment: 14 pages, 8 figures, accepted for publication in European Physical Journal

    Transport of a quantum degenerate heteronuclear Bose-Fermi mixture in a harmonic trap

    Full text link
    We report on the transport of mixed quantum degenerate gases of bosonic 87Rb and fermionic 40K in a harmonic potential provided by a modified QUIC trap. The samples are transported over a distance of 6 mm to the geometric center of the anti-Helmholtz coils of the QUIC trap. This transport mechanism was implemented by a small modification of the QUIC trap and is free of losses and heating. It allows all experiments using QUIC traps to use the highly homogeneous magnetic fields that can be created in the center of a QUIC trap and improves the optical access to the atoms, e.g., for experiments with optical lattices. This mechanism may be cascaded to cover even larger distances for applications with quantum degenerate samples.Comment: 7 pages, 8 figure

    Geometric Phase in Entangled Bipartite Systems

    Full text link
    The geometric phase (GP) for bipartite systems in transverse external magnetic fields is investigated in this paper. Two different situations have been studied. We first consider two non-interacting particles. The results show that because of entanglement, the geometric phase is very different from that of the non-entangled case. When the initial state is a Werner state, the geometric phase is, in general, zero and moreover the singularity of the geometric phase may appear with a proper evolution time. We next study the geometric phase when intra-couplings appear and choose Werner states as the initial states to entail this discussion. The results show that unlike our first case, the absolute value of the GP is not zero, and attains its maximum when the rescaled coupling constant JJ is less than 1. The effect of inhomogeneity of the magnetic field is also discussed.Comment: 5 pages and to be published in Euro. Phys. J.

    Probing dense and hot matter with low-mass dileptons and photons

    Full text link
    Results on low-mass dileptons, covering the very broad energy range from the BEVALAC up to SPS are reviewed. The emphasis is on the open questions raised by the intriguing results obtained so far and the prospects for addressing them in the near future with the second generation of experiments, in particular HADES, NA60 and PHENIX.Comment: 6 pages, 8 figures, Proceedings of Hard Probes 2004 Conference, Ericeira, November 4-10, 2004. Caption of Figure 2 corrected. To be published in Eur. Phys. J. C. The orginal version is available at www.springerlink.co

    Circular 71

    Get PDF
    A comparative yield trial with 24 named varieties and numbered selections of potatoes was conducted at the University of Alaska Fairbanks, Agricultural and Forestry Experiment Station’s Palmer Research Center during the 1988 growing season. The trial was conducted at the Matanuska Research Farm, located six miles west of Palmer on Trunk Road. Nonirrigated trials have been conducted annually since 1982, and irrigated trials started in 1985. Results of previous trials have been recorded in AFES Circulars 49, 54, 58 and 65. These circulars are available at the Agricultural and Forestry Experiment Station offices in Fairbanks and Palmer.Introduction -- Matanuska Farm Yield Trials: Cultural Practices - Environmental Conditions, Results and Discussion; Trials at Other Locations in Alaska: General Procedures; Specific Site Information: Ambler, Delta Junction, Kake, Kenai - Soldotna, Kodiak, Kotzebue, Palmer, Pt. MacKenzie -- LIST OF TABLE

    An Origin of CMR: Competing Phases and Disorder-Induced Insulator-to-Metal Transition in Manganites

    Full text link
    We theoretically explore the mechanism of the colossal magnetoresistance in manganese oxides by explicitly taking into account the phase competition between the double-exchange ferromagnetism and the charge-ordered insulator. We find that quenched disorder causes a drastic change of the multicritical phase diagram by destroying the charge-ordered state selectively. As a result, there appears a nontrivial phenomenon of the disorder-induced insulator-to-metal transition in the multicritical regime. On the contrary, the disorder induces a highly-insulating state above the transition temperature where charge-ordering fluctuations are much enhanced. The contrasting effects provide an understanding of the mechanism of the colossal magnetoresistance. The obtained scenario is discussed in comparison with other theoretical proposals such as the polaron theory, the Anderson localization, the multicritical-fluctuation scenario, and the percolation scenario.Comment: 16 pages, 7 figures, submitted to Wandlitz Days on Magnetism: Local-Moment Ferromagnets: Unique Properties for Modern Application
    corecore