44,501,028 research outputs found

    Electromagnetic structure of charmed baryons in Lattice QCD

    Get PDF
    As a continuation of our recent work on the electromagnetic properties of the doubly charmed Ξcc\Xi_{cc} baryon, we compute the charge radii and the magnetic moments of the singly charmed Σc\Sigma_c, Ωc\Omega_c and the doubly charmed Ωcc\Omega_{cc} baryons in 2+1 flavor Lattice QCD. In general, the charmed baryons are found to be compact as compared to the proton. The charm quark acts to decrease the size of the baryons to smaller values. We discuss the mechanism behind the dependence of the charge radii on the light valence- and sea-quark masses. The magnetic moments are found to be almost stable with respect to changing quark mass. We investigate the individual quark sector contributions to the charge radii and the magnetic moments. The magnetic moments of the singly charmed baryons are found to be dominantly determined by the light quark and the role of the charm quark is significantly enhanced for the doubly charmed baryons.Comment: Updated results, improved analysis. Version to appear in JHE

    Quantifying bid-ask spreads in the Chinese stock market using limit-order book data: Intraday pattern, probability distribution, long memory, and multifractal nature

    Full text link
    The statistical properties of the bid-ask spread of a frequently traded Chinese stock listed on the Shenzhen Stock Exchange are investigated using the limit-order book data. Three different definitions of spread are considered based on the time right before transactions, the time whenever the highest buying price or the lowest selling price changes, and a fixed time interval. The results are qualitatively similar no matter linear prices or logarithmic prices are used. The average spread exhibits evident intraday patterns consisting of a big L-shape in morning transactions and a small L-shape in the afternoon. The distributions of the spread with different definitions decay as power laws. The tail exponents of spreads at transaction level are well within the interval (2,3)(2,3) and that of average spreads are well in line with the inverse cubic law for different time intervals. Based on the detrended fluctuation analysis, we found the evidence of long memory in the bid-ask spread time series for all three definitions, even after the removal of the intraday pattern. Using the classical box-counting approach for multifractal analysis, we show that the time series of bid-ask spread does not possess multifractal nature.Comment: 8 EPJ pages including 7 eps figure

    Results from NEMO 3

    Full text link
    The NEMO 3 experiment is located in the Modane Underground Laboratory and has been taking data since 2003 with seven isotopes. It is searching for the double beta decay process with two or zero neutrinos emitted in the final state. Precision measurements of the half-life of the isotopes due to two neutrino double beta decay have been performed and new results for 96Zr, 48Ca and 150Nd are presented here. Measurements of this process are important for reducing the uncertainties on the nuclear matrix elements. No evidence for zero neutrino double beta decay has been found and a 90% Confidence Level lower limit on the half-life of this process is derived. From this an upper limit can be set on the effective Majorana neutrino mass using the most recent nuclear matrix elements calculations.Comment: 4 pages, 6 figures, a paper submitted to the proceedings for the conference Neutrino0

    Chromospheric explosions

    Get PDF
    Three issues relative to chromospheric explosions were debated. (1) Resolved: The blue-shifted components of x-ray spectral lines are signatures of chromospheric evaporation. It was concluded that the plasma rising with the corona is indeed the primary source of thermal plasma observed in the corona during flares. (2) Resolved: The excess line broading of UV and X-ray lines is accounted for by a convective velocity distribution in evaporation. It is concluded that the hypothesis that convective evaporation produces the observed X-ray line widths in flares is no more than a hypothesis. It is not supported by any self-consistent physical theory. (3) Resolved: Most chromospheric heating is driven by electron beams. Although it is possible to cast doubt on many lines of evidence for electron beams in the chromosphere, a balanced view that debaters on both sides of the question might agree to is that electron beams probably heat the low corona and upper chromosphere, but their direct impact on evaporating the chromosphere is energetically unimportant when compared to conduction. This represents a major departure from the thick-target flare models that were popular before the Workshop

    Creating Ioffe-Pritchard micro-traps from permanent magnetic film with in-plane magnetization

    Full text link
    We present designs for Ioffe-Pritchard type magnetic traps using planar patterns of hard magnetic material. Two samples with different pattern designs were produced by spark erosion of 40 μ\mum thick FePt foil. The pattern on the first sample yields calculated axial and radial trap frequencies of 51 Hz and 6.8 kHz, respectively. For the second sample the calculated frequencies are 34 Hz and 11 kHz. The structures were used successfully as a magneto-optical trap for 87^{87}Rb and loaded as a magnetic trap. A third design, based on lithographically patterned 250 nm thick FePt film on a Si substrate, yields an array of 19 traps with calculated axial and radial trap frequencies of 1.5 kHz and 110 kHz, respectively.Comment: 8 pages, 5 figures Revised and accepted for EPJD, improved picture

    Stabilizing the intensity of a wave amplified by a beam of particles

    Full text link
    The intensity of an electromagnetic wave interacting self-consistently with a beam of charged particles as in a free electron laser, displays large oscillations due to an aggregate of particles, called the macro-particle. In this article, we propose a strategy to stabilize the intensity by re-shaping the macro-particle. This strategy involves the study of the linear stability (using the residue method) of selected periodic orbits of a mean-field model. As parameters of an additional perturbation are varied, bifurcations occur in the system which have drastic effect on the modification of the self-consistent dynamics, and in particular, of the macro-particle. We show how to obtain an appropriate tuning of the parameters which is able to strongly decrease the oscillations of the intensity without reducing its mean-value

    Electromagnetic properties of doubly charmed baryons in Lattice QCD

    Full text link
    We compute the electromagnetic properties of \Xi_cc baryons in 2+1 flavor Lattice QCD. By measuring the electric charge and magnetic form factors of \Xi_cc baryons, we extract the magnetic moments, charge and magnetic radii as well as the \Xi_cc \Xi_cc \rho coupling constant, which provide important information to understand the size, shape and couplings of the doubly charmed baryons. We find that the two heavy charm quarks drive the charge radii and the magnetic moment of \Xi_cc to smaller values as compared to those of, e.g., the proton.Comment: 15 pages, 5 figures; added discussions and references, version accepted by PL

    Shake-induced order in nanosphere systems

    Full text link
    Self-assembled patterns obtained from a drying nanosphere suspension are investigated by computer simulations and simple experiments. Motivated by the earlier experimental results of Sasaki and Hane and Schope, we confirm that more ordered triangular lattice structures can be obtained whenever a moderate intensity random shaking is applied on the drying system. Computer simulations are realized on an improved version of a recently elaborated Burridge-Knopoff-type model. Experiments are made following the setup of Sasaki and Hane, using ultrasonic radiation as source for controlled shaking.Comment: 7 pages, 10 figure

    Spread of dystonia in patients with idiopathic adult-onset laryngeal dystonia

    Get PDF
    Background and purpose: Adult-onset laryngeal dystonia (LD) can be isolated or can be associated with dystonia in other body parts. Combined forms can be segmental at the onset or can result from dystonia spread to or from the larynx. The aim of this study was to identify the main clinical and demographic features of adult-onset idiopathic LD in an Italian population with special focus on dystonia spread. Methods: Data were obtained from the Italian Dystonia Registry (IDR) produced by 37 Italian institutions. Clinical and demographic data of 71 patients with idiopathic adult-onset LD were extracted from a pool of 1131 subjects included in the IDR. Results: Fifty of 71 patients presented a laryngeal focal onset; the remaining subjects had onset in other body regions and later laryngeal spread. The two groups did not show significant differences of demographic features. 32% of patients with laryngeal onset reported spread to contiguous body regions afterwards and in most cases (12 of 16 subjects) dystonia started to spread within 1 year from the onset. LD patients who remained focal and those who had dystonia spread did not show other differences. Conclusions: Data from IDR show that dystonic patients with focal laryngeal onset will present spread in almost one-third of cases. Spread from the larynx occurs early and is directed to contiguous body regions showing similarities with clinical progression of blepharospasm. This study gives a new accurate description of LD phenomenology that may contribute to improving the comprehension of dystonia pathophysiology
    corecore