3,995 research outputs found

    Planning and Real Time Control of a Minimally Invasive Robotic Surgery System

    Get PDF
    This paper introduces the planning and control software of a teleoperating robotic system for minimally invasive surgery. It addresses the problem of how to organize a complex system with 41 degrees of freedom including robot setup planning, force feedback control and nullspace handling with three robotic arms. The planning software is separated into sequentially executed planning and registration procedures. An optimal setup is first planned in virtual reality and then adapted to variations in the operating room. The real time control system is composed of hierarchical layers. The design is flexible and expandable without losing performance. Structure, functionality and implementation of planning and control are described. The robotic system provides the surgeon with an intuitive hand-eye-coordination and force feedback in teleoperation for both hands

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Identifying barriers in telesurgery by studying current team practices in robot-assisted surgery

    Get PDF
    This paper investigates challenges in current practices in robot-assisted surgery. In addition, by using the method of proxy technology assessment, we provide insights into the current barriers to wider application of robot-assisted telesurgery, where the surgeon and console are physically remote from the patient and operating team. Research in this field has focused on the financial and technological constraints that limit such application; less has been done to clarify the complex dynamics of an operating team that traditionally works in close symbiosis. Results suggest that there are implications for working practices in transitioning from traditional robot-assisted surgery to remote robotic surgery that need to be addressed, such as possible communication problems which might have a negative impact on patient outcomes

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Assistance strategies for robotized laparoscopy

    Get PDF
    Robotizing laparoscopic surgery not only allows achieving better accuracy to operate when a scale factor is applied between master and slave or thanks to the use of tools with 3 DoF, which cannot be used in conventional manual surgery, but also due to additional informatic support. Relying on computer assistance different strategies that facilitate the task of the surgeon can be incorporated, either in the form of autonomous navigation or cooperative guidance, providing sensory or visual feedback, or introducing certain limitations of movements. This paper describes different ways of assistance aimed at improving the work capacity of the surgeon and achieving more safety for the patient, and the results obtained with the prototype developed at UPC.Peer ReviewedPostprint (author's final draft

    Augmented Reality-based Feedback for Technician-in-the-loop C-arm Repositioning

    Full text link
    Interventional C-arm imaging is crucial to percutaneous orthopedic procedures as it enables the surgeon to monitor the progress of surgery on the anatomy level. Minimally invasive interventions require repeated acquisition of X-ray images from different anatomical views to verify tool placement. Achieving and reproducing these views often comes at the cost of increased surgical time and radiation dose to both patient and staff. This work proposes a marker-free "technician-in-the-loop" Augmented Reality (AR) solution for C-arm repositioning. The X-ray technician operating the C-arm interventionally is equipped with a head-mounted display capable of recording desired C-arm poses in 3D via an integrated infrared sensor. For C-arm repositioning to a particular target view, the recorded C-arm pose is restored as a virtual object and visualized in an AR environment, serving as a perceptual reference for the technician. We conduct experiments in a setting simulating orthopedic trauma surgery. Our proof-of-principle findings indicate that the proposed system can decrease the 2.76 X-ray images required per desired view down to zero, suggesting substantial reductions of radiation dose during C-arm repositioning. The proposed AR solution is a first step towards facilitating communication between the surgeon and the surgical staff, improving the quality of surgical image acquisition, and enabling context-aware guidance for surgery rooms of the future. The concept of technician-in-the-loop design will become relevant to various interventions considering the expected advancements of sensing and wearable computing in the near future

    Effects of Experience and Workplace Culture in Human-Robot Team Interaction in Robotic Surgery: A Case Study

    Get PDF
    International audienceRobots are being used in the operating room to aid in surgery, prompting changes to workflow and adaptive behavior by the users. This case study presents a methodology for examining human-robot team interaction in a complex environment, along with the results of its application in a study of the effects of experience and workplace culture, for human-robot team interaction in the operating room. The analysis of verbal and non-verbal events in robotic surgery in two different surgical teams (one in the US and one in France) revealed differences in workflow, timeline, roles, and communication patterns as a function of experience and workplace culture. Longer preparation times and more verbal exchanges related to uncertainty in use of the robotic equipment were found for the French team, who also happened to be less experienced. This study offers an effective method for studying human-robot team interaction and has implications for the future design and training of teamwork with robotic systems in other complex work environments
    • …
    corecore