140 research outputs found

    An Overview of Smart Shoes in the Internet of Health Things: Gait and Mobility Assessment in Health Promotion and Disease Monitoring

    Get PDF
    New smart technologies and the internet of things increasingly play a key role in healthcare and wellness, contributing to the development of novel healthcare concepts. These technologies enable a comprehensive view of an individual’s movement and mobility, potentially supporting healthy living as well as complementing medical diagnostics and the monitoring of therapeutic outcomes. This overview article specifically addresses smart shoes, which are becoming one such smart technology within the future internet of health things, since the ability to walk defines large aspects of quality of life in a wide range of health and disease conditions. Smart shoes offer the possibility to support prevention, diagnostic work-up, therapeutic decisions, and individual disease monitoring with a continuous assessment of gait and mobility. This overview article provides the technological as well as medical aspects of smart shoes within this rising area of digital health applications, and is designed especially for the novel reader in this specific field. It also stresses the need for closer interdisciplinary interactions between technological and medical experts to bridge the gap between research and practice. Smart shoes can be envisioned to serve as pervasive wearable computing systems that enable innovative solutions and services for the promotion of healthy living and the transformation of health care

    Virtual visual cues:vice or virtue?

    Get PDF

    Transforming Personal Healthcare through Technology - A Systematic Literature Review of Wearable Sensors for Medical Application

    Get PDF
    Wearable Sensor Health Technology (WSHT) captures, analyzes and aggregates physiological data to improve personal well-being. Recently the technology market is flooded with wearable sensors that measure health-related data and have a high user adoption. Nevertheless, these devices are almost exclusively used for fitness purposes and the healthcare sector still faces the challenge of constantly increasing costs. To respond to the necessary but rare use of WSHT in professional healthcare, we aim to identify the most promising areas for future medical implementation. Therefore, we performed a systematic literature search and reviewed 97 papers with regard to disease treatment, application area, vital parameter measurement and target patient. As a result, we could identify five potential areas for further research: (RA1) concentration on widespread diseases, (RA2) expansion of WSHT’s functionality, (RA3) diversity of vital parameter measurements, (RA4) proactive analysis of sensor data for preventive purposes and (RA5) promoting patient adoption through enhanced usability

    A pervasive body sensor network for monitoring post-operative recovery

    Get PDF
    Over the past decade, miniaturisation and cost reduction brought about by the semiconductor industry has led to computers smaller in size than a pin head, powerful enough to carry out the processing required, and affordable enough to be disposable. Similar technological advances in wireless communication, sensor design, and energy storage have resulted in the development of wireless “Body Sensor Network (BSN) platforms comprising of tiny integrated micro sensors with onboard processing and wireless data transfer capability, offering the prospect of pervasive and continuous home health monitoring. In surgery, the reduced trauma of minimally invasive interventions combined with initiatives to reduce length of hospital stay and a socioeconomic drive to reduce hospitalisation costs, have all resulted in a trend towards earlier discharge from hospital. There is now a real need for objective, pervasive, and continuous post-operative home recovery monitoring systems. Surgical recovery is a multi-faceted and dynamic process involving biological, physiological, functional, and psychological components. Functional recovery (physical independence, activities of daily living, and mobility) is recognised as a good global indicator of a patient’s post-operative course, but has traditionally been difficult to objectively quantify. This thesis outlines the development of a pervasive wireless BSN system to objectively monitor the functional recovery of post-operative patients at home. Biomechanical markers were identified as surrogate measures for activities of daily living and mobility impairment, and an ear-worn activity recognition (e-AR) sensor containing a three-axis accelerometer and a pulse oximeter was used to collect this data. A simulated home environment was created to test a Bayesian classifier framework with multivariate Gaussians to model activity classes. A real-time activity index was used to provide information on the intensity of activity being performed. Mobility impairment was simulated with bracing systems and a multiresolution wavelet analysis and margin-based feature selection framework was used to detect impaired mobility. The e-AR sensor was tested in a home environment before its clinical use in monitoring post-operative home recovery of real patients who have undergone surgery. Such a system may eventually form part of an objective pervasive home recovery monitoring system tailored to the needs of today’s post-operative patient.Open acces

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Wearables in medicine

    Get PDF
    Wearables as medical technologies are becoming an integral part of personal analytics, measuring physical status, recording physiological parameters, or informing schedule for medication. These continuously evolving technology platforms do not only promise to help people pursue a healthier life style, but also provide continuous medical data for actively tracking metabolic status, diagnosis, and treatment. Advances in the miniaturization of flexible electronics, electrochemical biosensors, microfluidics, and artificial intelligence algorithms have led to wearable devices that can generate real-time medical data within the Internet of things. These flexible devices can be configured to make conformal contact with epidermal, ocular, intracochlear, and dental interfaces to collect biochemical or electrophysiological signals. This article discusses consumer trends in wearable electronics, commercial and emerging devices, and fabrication methods. It also reviews real-time monitoring of vital signs using biosensors, stimuli-responsive materials for drug delivery, and closed-loop theranostic systems. It covers future challenges in augmented, virtual, and mixed reality, communication modes, energy management, displays, conformity, and data safety. The development of patient-oriented wearable technologies and their incorporation in randomized clinical trials will facilitate the design of safe and effective approaches

    Assessment and optimisation of wearable activity monitors within an enhanced recovery framework

    Get PDF
    Enhanced recovery after surgery (ERAS) is a model of care that aims to improve patient recovery after surgery. Wearable activity monitors (WAMs) have the potential to provide possible solutions to a wide range of clinical challenges. The aim of this thesis was to assess whether physical activity, measured by a WAM, can be used as a measurable marker of peri-operative well-being and recovery after surgery, and whether the WAM can therefore be used to assess and help improve recovery after surgery. A wrist-worn WAM was utilised to measure physical activity in a healthy normal cohort showing that it was feasible to monitor continuous physical activity in a healthy cohort in a free-living environment. Activity data were processed both at an individual level and as a group allowing further analysis and comparator with the surgical patient cohort. The WAM was used to measure objective physical activity data for a cohort of patients undergoing colorectal surgery. Activity was assessed pre-operatively at home, post-operatively on the in-patient ward and then on discharge home back into the community. The physical activity data gave insight into patients’ baseline function and their progression and recovery following their surgical procedure, with more detailed analysis showing the WAM’s ability to reflect the daily activities on the ward. There were statistically significant correlations between peri-operative physical activity and post-operative outcomes. The results from the use of WAMs within this thesis provide an opportunity for refining the ERAS concept through continuous, objective physical activity monitoring as well as the potential to enhance patient/clinician communication, leading to more personalised care and an improvement in post-operative outcomes.Open Acces
    • 

    corecore