84 research outputs found

    Neurovisceral phenotypes in the expression of psychiatric symptoms

    Get PDF
    This review explores the proposal that vulnerability to psychological symptoms, particularly anxiety, originates in constitutional differences in the control of bodily state, exemplified by a set of conditions that include Joint Hypermobility, Postural Tachycardia Syndrome and Vasovagal Syncope. Research is revealing how brainbody mechanisms underlie individual differences in psychophysiological reactivity that can be important for predicting, stratifying and treating individuals with anxiety disorders and related conditions. One common constitutional difference is Joint Hypermobility, in which there is an increased range of joint movement as a result of a variant of collagen. Joint hypermobility is over-represented in people with anxiety, mood and neurodevelopmental disorders. It is also linked to stress-sensitive medical conditions such as irritable bowel syndrome, chronic fatigue syndrome and fibromyalgia. Structural differences in 'emotional' brain regions are reported in hypermobile individuals, and many people with joint hypermobility manifest autonomic abnormalities, typically Postural Tachycardia Syndrome. Enhanced heart rate reactivity during postural change and as recently recognised factors causing vasodilatation (as noted post prandially, post exertion and with heat) is characteristic of Postural Tachycardia Syndrome, and there is a phenomenological overlap with anxiety disorders, which may be partially accounted for by exaggerated neural reactivity within ventromedial prefrontal cortex. People who experience Vasovagal Syncope, a heritable tendency to fainting induced by emotional challenges (and needle/blood phobia), are also more vulnerable to anxiety disorders. Neuroimaging implicates brainstem differences in vulnerability to faints, yet the structural integrity of the caudate nucleus appears important for the control of fainting frequency in relation to parasympathetic tone and anxiety. Together there is clinical and neuroanatomical evidence to show that common constitutional differences affecting autonomic responsivity are linked to psychiatric symptoms, notably anxiety

    Structural brain abnormalities in postural tachycardia syndrome: A VBM-DARTEL study

    Get PDF
    Postural tachycardia syndrome (PoTS), a form of dysautonomia, is characterized by orthostatic intolerance, and is frequently accompanied by a range of symptoms including palpitations, lightheadedness, clouding of thought, blurred vision, fatigue, anxiety, and depression. Although the estimated prevalence of PoTS is approximately 5–10 times as common as the better-known condition orthostatic hypotension, the neural substrates of the syndrome are poorly characterized. In the present study, we used magnetic resonance imaging (MRI) with voxel-based morphometry (VBM) applying the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) procedure to examine variation in regional brain structure associated with PoTS. We recruited 11 patients with established PoTS and 23 age-matched normal controls. Group comparison of gray matter volume revealed diminished gray matter volume within the left anterior insula, right middle frontal gyrus and right cingulate gyrus in the PoTS group. We also observed lower white matter volume beneath the precentral gyrus and paracentral lobule, right pre- and post-central gyrus, paracentral lobule and superior frontal gyrus in PoTS patients. Subsequent ROI analyses revealed significant negative correlations between left insula volume and trait anxiety and depression scores. Together, these findings of structural differences, particularly within insular and cingulate components of the salience network, suggest a link between dysregulated physiological reactions arising from compromised central autonomic control (and interoceptive representation) and increased vulnerability to psychiatric symptoms in PoTS patients

    Is it possible to accurately differentiate neurocardiogenic syncope from epilepsy?

    Get PDF
    Global cerebral hypoperfusion resulting in syncope, and asynchronous discharge of cerebral neurons leading to seizure, are two major mechanisms of transient loss of consciousness. They both have a lot in common in clinical and historical settings, although with a high prevalence of incorrect diagnosis, even by well-trained staff. The aim of this review was to try to combine data from both a cardiologist’s and a neurologist’s perspective (history taking, special questionnaires, serum prolactin, EEG, CT/MRI, tilt-testing, loop recorders). (Cardiol J 2010; 17, 4: 420-427

    Neural correlates of fear: insights from neuroimaging

    Get PDF
    Fear anticipates a challenge to one's well-being and is a reaction to the risk of harm. The expression of fear in the individual is a constellation of physiological, behavioral, cognitive, and experiential responses. Fear indicates risk and will guide adaptive behavior, yet fear is also fundamental to the symptomatology of most psychiatric disorders. Neuroimaging studies of normal and abnormal fear in humans extend knowledge gained from animal experiments. Neuroimaging permits the empirical evaluation of theory (emotions as response tendencies, mental states, and valence and arousal dimensions), and improves our understanding of the mechanisms of how fear is controlled by both cognitive processes and bodily states. Within the human brain, fear engages a set of regions that include insula and anterior cingulate cortices, the amygdala, and dorsal brain-stem centers, such as periaqueductal gray matter. This same fear matrix is also implicated in attentional orienting, mental planning, interoceptive mapping, bodily feelings, novelty and motivational learning, behavioral prioritization, and the control of autonomic arousal. The stereotyped expression of fear can thus be viewed as a special construction from combinations of these processes. An important motivator for understanding neural fear mechanisms is the debilitating clinical expression of anxiety. Neuroimaging studies of anxiety patients highlight the role of learning and memory in pathological fear. Posttraumatic stress disorder is further distinguished by impairment in cognitive control and contextual memory. These processes ultimately need to be targeted for symptomatic recovery. Neuroscientific knowledge of fear has broader relevance to understanding human and societal behavior. As yet, only some of the insights into fear, anxiety, and avoidance at the individual level extrapolate to groups and populations and can be meaningfully applied to economics, prejudice, and politics. Fear is ultimately a contagious social emotion

    Acute tryptophan depletion attenuates conscious appraisal of social emotional signals in healthy female volunteers

    Get PDF
    Rationale: Acute tryptophan depletion (ATD) decreases levels of central serotonin. ATD thus enables the cognitive effects of serotonin to be studied, with implications for the understanding of psychiatric conditions, including depression. Objective: To determine the role of serotonin in conscious (explicit) and unconscious/incidental processing of emotional information. Materials and methods: A randomized, double-blind, cross-over design was used with 15 healthy female participants. Subjective mood was recorded at baseline and after 4 h, when participants performed an explicit emotional face processing task, and a task eliciting unconscious processing of emotionally aversive and neutral images presented subliminally using backward masking. Results: ATD was associated with a robust reduction in plasma tryptophan at 4 h but had no effect on mood or autonomic physiology. ATD was associated with significantly lower attractiveness ratings for happy faces and attenuation of intensity/arousal ratings of angry faces. ATD also reduced overall reaction times on the unconscious perception task, but there was no interaction with emotional content of masked stimuli. ATD did not affect breakthrough perception (accuracy in identification) of masked images. Conclusions: ATD attenuates the attractiveness of positive faces and the negative intensity of threatening faces, suggesting that serotonin contributes specifically to the appraisal of the social salience of both positive and negative salient social emotional cues. We found no evidence that serotonin affects unconscious processing of negative emotional stimuli. These novel findings implicate serotonin in conscious aspects of active social and behavioural engagement and extend knowledge regarding the effects of ATD on emotional perception

    PLoS One

    Get PDF
    A key component in the body's stress response, the hypothalamic-pituitary-adrenal (HPA) axis orchestrates changes across a broad range of major biological systems. Its dysfunction has been associated with numerous chronic diseases including Gulf War Illness (GWI) and chronic fatigue syndrome (CFS). Though tightly coupled with other components of endocrine and immune function, few models of HPA function account for these interactions. Here we extend conventional models of HPA function by including feed-forward and feedback interaction with sex hormone regulation and immune response. We use this multi-axis model to explore the role of homeostatic regulation in perpetuating chronic conditions, specifically GWI and CFS. An important obstacle in building these models across regulatory systems remains the scarcity of detailed human in vivo kinetic data as its collection can present significant health risks to subjects. We circumvented this using a discrete logic representation based solely on literature of physiological and biochemical connectivity to provide a qualitative description of system behavior. This connectivity model linked molecular variables across the HPA axis, hypothalamic-pituitary-gonadal (HPG) axis in men and women, as well as a simple immune network. Inclusion of these interactions produced multiple alternate homeostatic states and sexually dimorphic responses. Experimental data for endocrine-immune markers measured in male GWI subjects showed the greatest alignment with predictions of a naturally occurring alternate steady state presenting with hypercortisolism, low testosterone and a shift towards a Th1 immune response. In female CFS subjects, expression of these markers aligned with an alternate homeostatic state displaying hypocortisolism, high estradiol, and a shift towards an anti-inflammatory Th2 activation. These results support a role for homeostatic drive in perpetuating dysfunctional cortisol levels through persistent interaction with the immune system and HPG axis. Though coarse, these models may nonetheless support the design of robust treatments that might exploit these regulatory regimes.RES0008852/PHS HHS/United State

    Investigating the relationship between cardiac interoception and autonomic cardiac control using a predictive coding framework

    Get PDF
    Predictive coding models, such as the ‘free-energy principle’ (FEP), have recently been discussed in relation to how interoceptive (afferent visceral feedback) signals update predictions about the state of the body, thereby driving autonomic mediation of homeostasis. . This study appealed to ‘interoceptive inference’, under the FEP, to seek new insights into autonomic (dys)function and brain-body integration by examining the relationship between cardiac interoception and autonomic cardiac control in healthy controls and patients with forms of orthostatic intolerance (OI); to (i) seek empirical support for interoceptive inference and (ii) delineate if this relationship was sensitive to increased interoceptive prediction error in OI patients during head-up tilt (HUT)/symptom provocation. Measures of interoception and heart rate variability (HRV) were recorded whilst supine and during HUT in healthy controls (N=20), postural tachycardia syndrome (PoTS, N=20) and vasovagal syncope (VVS, N=20) patients. Compared to controls, interoceptive accuracy was reduced in both OI groups. Healthy controls’ interoceptive sensibility positively correlated with HRV whilst supine. Conversely, both OI groups’ interoceptive awareness negatively correlated with HRV during HUT. Our pilot study offers initial support for interoceptive inference and suggests OI cohorts share a central pathophysiology underlying interoceptive deficits expressed across distinct cardiovascular autonomic pathophysiology. From a predictive coding perspective, OI patients’ data indicates a failure to attenuate/modulate ascending interoceptive prediction errors, reinforced by the concomitant failure to engage autonomic reflexes during HUT. Our findings offer a potential framework for conceptualising how the human nervous system maintains homeostasis and how both central and autonomic processes are ultimately implicated in dysautonomia
    corecore