4,683 research outputs found

    Proceedings of the 4th field robot event 2006, Stuttgart/Hohenheim, Germany, 23-24th June 2006

    Get PDF
    Zeer uitgebreid verslag van het 4e Fieldrobotevent, dat gehouden werd op 23 en 24 juni 2006 in Stuttgart/Hohenhei

    Evaluation of Multi-Level Cognitive Maps for Supporting Between-Floor Spatial Behavior in Complex Indoor Environments

    Get PDF
    People often become disoriented when navigating in complex, multi-level buildings. To efficiently find destinations located on different floors, navigators must refer to a globally coherent mental representation of the multi-level environment, which is termed a multi-level cognitive map. However, there is a surprising dearth of research into underlying theories of why integrating multi-level spatial knowledge into a multi-level cognitive map is so challenging and error-prone for humans. This overarching problem is the core motivation of this dissertation. We address this vexing problem in a two-pronged approach combining study of both basic and applied research questions. Of theoretical interest, we investigate questions about how multi-level built environments are learned and structured in memory. The concept of multi-level cognitive maps and a framework of multi-level cognitive map development are provided. We then conducted a set of empirical experiments to evaluate the effects of several environmental factors on users’ development of multi-level cognitive maps. The findings of these studies provide important design guidelines that can be used by architects and help to better understand the research question of why people get lost in buildings. Related to application, we investigate questions about how to design user-friendly visualization interfaces that augment users’ capability to form multi-level cognitive maps. An important finding of this dissertation is that increasing visual access with an X-ray-like visualization interface is effective for overcoming the disadvantage of limited visual access in built environments and assists the development of multi-level cognitive maps. These findings provide important human-computer interaction (HCI) guidelines for visualization techniques to be used in future indoor navigation systems. In sum, this dissertation adopts an interdisciplinary approach, combining theories from the fields of spatial cognition, information visualization, and HCI, addressing a long-standing and ubiquitous problem faced by anyone who navigates indoors: why do people get lost inside multi-level buildings. Results provide both theoretical and applied levels of knowledge generation and explanation, as well as contribute to the growing field of real-time indoor navigation systems

    Human Visual Navigation: Effects of Visual Context, Navigation Mode, and Gender

    Get PDF
    Abstract This thesis extends research on human visual path integration using optic flow cues. In three experiments, a large-scale path-completion task was contextualised within highly-textured authentic virtual environments. Real-world navigational experience was further simulated, through the inclusion of a large roundabout on the route. Three semi-surrounding screens provided a wide field of view. Participants were able to perform the task, but directional estimates showed characteristic errors, which can be explained with a model of distance misperception on the outbound roads of the route. Display and route layout parameters had very strong effects on performance. Gender and navigation mode were also influential. Participants consistently underestimated the final turn angle when simulated self-motion was viewed passively, on large projection screens in a driving simulator. Error increased with increasing size of the internal angle, on route layouts based on equilateral or isosceles triangles. A compressed range of responses was found. Higher overall accuracy was observed when a display with smaller desktop computer monitors was used; especially when simulated self-motion was actively controlled with a steering wheel and foot pedals, rather than viewed passively. Patterns and levels of error depended on route layout, which included triangles with non-equivalent lengths of the two outbound roads. A powerful effect on performance was exerted by the length of the "approach segment" on the route: that is, the distance travelled on the first outbound road, combined with the distance travelled between the two outbound roads on the roundabout curve. The final turn angle was generally overestimated on routes with a long approach segment (those with a long first road and a 60° or 90° internal angle), and underestimated on routes with a short approach segment (those with a short first road or the 120° internal angle). Accuracy was higher for active participants on routes with longer approach segments and on 90° angle trials, and for passive participants on routes with shorter approach segments and on 120° angle trials. Active participants treated all internal angles as 90° angles. Participants performed with lower overall accuracy when optic flow information was disrupted, through the intermittent presentation of self-motion on the small-screen display, in a sequence of static snapshots of the route. Performance was particularly impaired on routes with a long approach segment, but quite accurate on those with a short approach segment. Consistent overestimation of the final angle was observed, and error decreased with increasing size of the internal angle. Participants treated all internal angles as 120° angles. The level of available visual information did not greatly affect estimates, in general. The degree of curvature on the roundabout mainly influenced estimates by female participants in the Passive condition. Compared with males, females performed less accurately in the driving simulator, and with reduced optic flow cues; but more accurately with the small-screen display on layouts with a short approach segment, and when they had active control of the self-motion. The virtual environments evoked a sense of presence, but this had no effect on task performance, in general. The environments could be used for training navigational skills where high precision is not required

    Design, modeling and analysis of object localization through acoustical signals for cognitive electronic travel aid for blind people

    Full text link
    El objetivo de la tesis consiste en el estudio y análisis de la localización de objetos en el entorno real mediante sonidos, así como la posterior integración y ensayo de un dispositivo real basado en tal técnica y destinado a personas con discapacidad visual. Con el propósito de poder comprender y analizar la localización de objetos se ha realizado un profundo estado de arte sobre los Sistemas de Navegación desarrollados durante las últimas décadas y orientados a personas con distintos grados de discapacidad visual. En el citado estado del arte, se han analizado y estructurado los dispositivos de navegación existentes, clasificándolos de acuerdo con los componentes de adquisición de datos del entorno utilizados. A este respecto, hay que señalar que, hasta el momento, se conocen tres clases de dispositivos de navegación: 'detectores de obstáculos', que se basan en dispositivos de ultrasonidos y sensores instalados en los dispositivos electrónicos de navegación con el objetivo de detectar los objetos que aparecen en el área de trabajo del sistema; 'sensores del entorno' - que tienen como objetivo la detección del objeto y del usuario. Esta clase de dispositivos se instalan en las estaciones de autobús, metro, tren, pasos de peatones etc., de forma que cuando el sensor del usuario penetra en el área de alcance de los sensores instalados en la estación, éstos informan al usuario sobre la presencia de la misma. Asimismo, el sensor del usuario detecta también los medios de transporte que tienen instalado el correspondiente dispositivo basado en láser o ultrasonidos, ofreciendo al usuario información relativa a número de autobús, ruta etc La tercera clase de sistemas electrónicos de navegación son los 'dispositivos de navegación'. Estos elementos se basan en dispositivos GPS, indicando al usuario tanto su locación, como la ruta que debe seguir para llegar a su punto de destino. Tras la primera etapa de elaboración del estaDunai ., L. (2010). Design, modeling and analysis of object localization through acoustical signals for cognitive electronic travel aid for blind people [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8441Palanci

    Comparison of in-sight and handheld navigation devices toward supporting industry 4.0 supply chains: First and last mile deliveries at the human level

    Get PDF
    Last (and First) mile deliveries are an increasingly important and costly component of supply chains especially those that require transport within city centres. With reduction in anticipated manufacturing and delivery timescales, logistics personnel are expected to identify the correct location (accurately) and supply the goods in appropriate condition (safe delivery). Moving towards more environmentally sustainable supply chains, the last/first mile of deliveries may be completed by a cyclist courier which could result in significant reductions in congestion and emissions in cities. In addition, the last metres of an increasing number of deliveries are completed on foot i.e. as a pedestrian. Although research into new technologies to support enhanced navigation capabilities is ongoing, the focus to date has been on technical implementations with limited studies addressing how information is perceived and actioned by a human courier. In the research reported in this paper a comparison study has been conducted with 24 participants evaluating two examples of state-of-the-art navigation aids to support accurate (right time and place) and safe (right condition) navigation. Participants completed 4 navigation tasks, 2 whilst cycling and 2 whilst walking. The navigation devices under investigation were a handheld display presenting a map and instructions and an in-sight monocular display presenting text and arrow instructions. Navigation was conducted in a real-world environment in which eye movements and device interaction were recorded using Tobii-Pro 2 eye tracking glasses. The results indicate that the handheld device provided better support for accurate navigation (right time and place), with longer but less frequent gaze interactions and higher perceived usability. The in-sight display supported improved situation awareness with a greater number of hazards acknowledged. The benefits and drawbacks of each device and use of visual navigation support tools are discussed

    Automatic Speed Control For Navigation in 3D Virtual Environment

    Get PDF
    As technology progresses, the scale and complexity of 3D virtual environments can also increase proportionally. This leads to multiscale virtual environments, which are environments that contain groups of objects with extremely unequal levels of scale. Ideally the user should be able to navigate such environments efficiently and robustly. Yet, most previous methods to automatically control the speed of navigation do not generalize well to environments with widely varying scales. I present an improved method to automatically control the navigation speed of the user in 3D virtual environments. The main benefit of my approach is that automatically adapts the navigation speed in multi-scale environments in a manner that enables efficient navigation with maximum freedom, while still avoiding collisions. The results of a usability tests show a significant reduction in the completion time for a multi-scale navigation task

    A Sound Approach Toward a Mobility Aid for Blind and Low-Vision Individuals

    Get PDF
    Reduced independent mobility of blind and low-vision individuals (BLVIs) cause considerable societal cost, burden on relatives, and reduced quality of life for the individuals, including increased anxiety, depression symptoms, need of assistance, risk of falls, and mortality. Despite the numerous electronic travel aids proposed since at least the 1940’s, along with ever-advancing technology, the mobility issues persist. A substantial reason for this is likely several and severe shortcomings of the field, both in regards to aid design and evaluation.In this work, these shortcomings are addressed with a generic design model called Desire of Use (DoU), which describes the desire of a given user to use an aid for a given activity. It is then applied on mobility of BLVIs (DoU-MoB), to systematically illuminate and structure possibly all related aspects that such an aid needs to aptly deal with, in order for it to become an adequate aid for the objective. These aspects can then both guide user-centered design as well as choice of test methods and measures.One such measure is then demonstrated in the Desire of Use Questionnaire for Mobility of Blind and Low-Vision Individuals (DoUQ-MoB), an aid-agnostic and comprehensive patient-reported outcome measure. The question construction originates from the DoU-MoB to ensure an encompassing focus on mobility of BLVIs, something that has been missing in the field. Since it is aid-agnostic it facilitates aid comparison, which it also actively promotes. To support the reliability of the DoUQ-MoB, it utilizes the best known practices of questionnaire design and has been validated once with eight orientation and mobility professionals, and six BLVIs. Based on this, the questionnaire has also been revised once.To allow for relevant and reproducible methodology, another tool presented herein is a portable virtual reality (VR) system called the Parrot-VR. It uses a hybrid control scheme of absolute rotation by tracking the user’s head in reality, affording intuitive turning; and relative movement where simple button presses on a controller moves the virtual avatar forward and backward, allowing for large-scale traversal while not walking physically. VR provides excellent reproducibility, making various aggregate movement analysis feasible, while it is also inherently safe. Meanwhile, the portability of the system facilitates testing near the participants, substantially increasing the number of potential blind and low-vision recruits for user tests.The thesis also gives a short account on the state of long-term testing in the field; it being short is mainly due to that there is not much to report. It then provides an initial investigation into possible outcome measures for such tests by taking instruments in use by Swedish orientation and mobility professionals as a starting point. Two of these are also piloted in an initial single-session trial with 19 BLVIs, and could plausibly be used for long-term tests after further evaluation.Finally, a discussion is presented regarding the Audomni project — the development of a primary mobility aid for BLVIs. Audomni is a visuo-auditory sensory supplementation device, which aims to take visual information and translate it to sound. A wide field-of-view, 3D-depth camera records the environment, which is then transformed to audio through the sonification algorithms of Audomni, and finally presented in a pair of open-ear headphones that do not block out environmental sounds. The design of Audomni leverages the DoU-MoB to ensure user-centric development and evaluation, in the aim of reaching an aid with such form and function that it grants the users better mobility, while the users still want to use it.Audomni has been evaluated with user tests twice, once in pilot tests with two BLVIs, and once in VR with a heterogenous set of 19 BLVIs, utilizing the Parrot-VR and the DoUQ-MoB. 76 % of responders (13 / 17) answered that it was very or extremely likely that they would want use Audomni along with their current aid. This might be the first result in the field demonstrating a majority of blind and low-vision participants reporting that they actually want to use a new electronic travel aid. This shows promise that eventual long-term tests will demonstrate an increased mobility of blind and low-vision users — the overarching project aim. Such results would ultimately mean that Audomni can become an aid that alleviates societal cost, reduces burden on relatives, and improves users’ quality of life and independence
    corecore