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People often become disoriented when navigating in complex, multi-level 

buildings. To efficiently find destinations located on different floors, navigators must 

refer to a globally coherent mental representation of the multi-level environment, which 

is termed a multi-level cognitive map. However, there is a surprising dearth of research 

into underlying theories of why integrating multi-level spatial knowledge into a 

multi-level cognitive map is so challenging and error-prone for humans. This overarching 

problem is the core motivation of this dissertation.  

We address this vexing problem in a two-pronged approach combining study of 

both basic and applied research questions. Of theoretical interest, we investigate 

questions about how multi-level built environments are learned and structured in memory. 

The concept of multi-level cognitive maps and a framework of multi-level cognitive map 



 

 

   

development are provided. We then conducted a set of empirical experiments to evaluate 

the effects of several environmental factors on users’ development of multi-level 

cognitive maps. The findings of these studies provide important design guidelines that 

can be used by architects and help to better understand the research question of why 

people get lost in buildings. Related to application, we investigate questions about how to 

design user-friendly visualization interfaces that augment users’ capability to form 

multi-level cognitive maps. An important finding of this dissertation is that increasing 

visual access with an X-ray-like visualization interface is effective for overcoming the 

disadvantage of limited visual access in built environments and assists the development 

of multi-level cognitive maps. These findings provide important human-computer 

interaction (HCI) guidelines for visualization techniques to be used in future indoor 

navigation systems.  

In sum, this dissertation adopts an interdisciplinary approach, combining theories 

from the fields of spatial cognition, information visualization, and HCI, addressing a 

long-standing and ubiquitous problem faced by anyone who navigates indoors: why do 

people get lost inside multi-level buildings. Results provide both theoretical and applied 

levels of knowledge generation and explanation, as well as contribute to the growing field 

of real-time indoor navigation systems. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Public buildings such as hospitals, libraries, shopping malls, airports, parking 

facilities, etc., are becoming more complex with many aboveground floors and 

underground levels. As a case in point, the growing size of malls makes these structures 

seem like an ‘indoor city’, meaning that they are large and cognitively complex 

environments with many possible destinations and heavy pedestrian traffic (Uzzell, 1995). 

Multi-level buildings have the advantage of more efficient use of land space, particularly 

where space is limited or expensive, and are less expensive to cool or heat compared to a 

more sprawling single-level structure. However, these complex multi-level buildings 

often cause navigators to become frustrated, disoriented, or lost during navigation, 

especially when traversing between floors. It is widely accepted that to efficiently reach a 

destination in complex environments without becoming lost, navigators rely on the 

support of cognitive maps—an enduring, observer-free spatial representation of the 

environment (O’Keefe & Nadel, 1978; Tolman, 1948). Similarly, to accurately and 

efficiently find targets located on different floors, people must form a globally coherent 

mental representation of the multi-level built environment, termed a multi-level cognitive 
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map. Previous literature on navigation in multi-level built environments has shown that 

the integration of multi-level spatial knowledge acquired from different floors into a 

multi-level cognitive map is a challenging spatio-cognitive task for human spatial 

cognition. For instance, navigators have been shown to be significantly less accurate 

when pointing to locations between floors than within a single floor, and inter-floor 

knowledge has been argued as the cause of disorientation in both physical and virtual 

environments (Carlson, Hölscher, Shipley, & Dalton, 2010; Giudice & Li, 2012; Hölscher, 

Meilinger, Vrachliotis, Brösamle, & Knauff, 2006; Li & Giudice, 2013; Montello & Pick, 

1993; Passini, 1992; Richardson, Montello, & Hegarty, 1999; Soeda, Kushiyama, & 

Ohno, 1997). Given the aforementioned literature highlighting the challenges of 

between-floor pointing and navigation, there is a surprising dearth of research into 

underlying theories of why integrating multi-level spatial knowledge into a multi-level 

cognitive map is so challenging and error-prone for humans. This overarching problem is 

the core motivation of this thesis.  

A second core motivation of the thesis is to address solutions for the indoor 

navigation problem by developing and evaluating user-friendly visualization interfaces to 

facilitate cross-level spatial behaviors such as between-floor pointing and wayfinding. 

Wayfinding is the process of determining and following a path between an origin and a 

destination through the environment (Golledge, 1999). Many users experience challenges 
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wayfinding accurately and efficiently without effective navigation systems in complex 

buildings. “The hope is that cognitive science will lead to a better understanding of the 

human mind, of teaching and learning, of mental abilities and of the development of 

intelligent devices that can augment human capabilities in important and constructive 

ways” (Norman, 1981). There is, therefore, a significant need for us to empirically study 

the very real issue that people get lost inside buildings and to develop perceptually-salient 

and user-friendly interfaces for supporting human wayfinding as well as other cross-level 

spatial behaviors in multi-level built environments.  

1.2 Goals, Research Questions, Hypotheses, and Evaluations 

The primary goal of this thesis is to elucidate empirical evidence that provides 

valuable insights for addressing the question of why integrating multi-level spatial 

knowledge into a multi-level cognitive map is so challenging and error-prone for humans. 

To this end, we defined the concept of multi-level cognitive maps and developed a 

theoretical framework of multi-level cognitive map development to interpret relevant 

psychological mechanisms, processes, and knowledge structures involved in learning a 

new multi-level built environment. This thesis has the following two key goals: 

(1) Improving our understanding of how environmental factors affect human 

mental representation of multi-level built environments (spatial cognition aspect). The 
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outcomes of the proposed experiments relating to this goal will provide evidence-based 

design interventions for architects. 

(2) Developing and evaluating user-friendly visualization interfaces that augment 

humans’ ability to build multi-level cognitive maps (visualization techniques aspect). The 

findings of the proposed experiments will provide new human-computer interaction (HCI) 

principles for cognitively motivated visualization techniques for developing indoor 

navigation systems. 

The first goal provides foundations for the rationale guiding the design of the 

visualization interfaces, which is the second goal of this thesis. On the other hand, the 

findings of the second goal validate the hypotheses proposed in the first goal. The two 

goals lead to the following three key research questions. 

(1) How do structural and topological properties of multi-level built environments 

impact users’ development of multi-level cognitive maps?  

(2) How do global landmarks (i.e., salient environmental features visible from 

multiple locations/levels of a building) affect users’ mental representation of multi-level 

built environments?  

(3) How do the proposed visualization interfaces assist users’ ability to build 

multi-level cognitive maps?  
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These three research questions correspond to the following five hypotheses, the 

background rationale of which will be provided in Chapter 2. 

Hypothesis 1: Complex between-floor structural and topological properties impair 

users’ development of multi-level cognitive maps. 

Hypothesis 2: Visual access to a global landmark from within a building promotes 

users’ development of multi-level cognitive maps. 

Hypothesis 3: If a global landmark is visible from both indoor and outdoor spaces, 

it will facilitate both cross-level spatial knowledge integration and the integration of 

outdoor and indoor spaces (OI-spaces). 

Hypothesis 4: Using augmented reality (AR) technology to increase visual access 

to global landmarks will facilitate accurate development of multi-level cognitive maps. 

Hypothesis 5: Schematic maps that effectively convey multi-level building 

information (e.g., providing users with access to between-floor alignment) alleviate the 

challenge of integrating cross-level spatial knowledge and facilitates accurate 

development of multi-level cognitive maps. 

These hypotheses are investigated throughout this dissertation in seven behavioral 

experiments (see Table 1.1).  
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Table 1.1. Five hypotheses are evaluated through Experiments 1-7. 

Hypotheses Experiments 

Hypothesis 1 Experiments 1-3 

Hypothesis 2 Experiment 4 

Hypothesis 3 Experiment 4 

Hypothesis 4 Experiments 5-6 

Hypothesis 5 Experiment 7 

1.3 Scope of Thesis 

This thesis research adopts an interdisciplinary approach, combining theories 

from the fields of cognitive psychology, information visualization, and HCI. The research 

areas of neuroscience and computational modelling contribute to the findings of this 

research as well. However, this research is principally empirical and behavioral.  

This dissertation is primarily concerned with psychological space—how 

multi-level built environments are mentally represented and processed. Psychological 

space includes “concepts which the mind constructs on the basis of reflections on 

experience, and which would not exist if minds did not exist” (O’Keefe & Nadel, 1978). 

The focus on mental representation of multi-level built environments distinguishes this 

thesis research from (1) the research on single-floor indoor wayfinding that deals with 
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spatial cognition issues on a single plane, and (2) the research on indoor navigation that 

emphasizes modeling of building structures (e.g., connectivity of floor layouts) to support 

automatic generation of navigation routes (Yang, 2015). This thesis is primarily 

concerned with how humans learn and represent a multi-level building. Accordingly, the 

visualization interfaces proposed in this thesis aim to augment users’ ability to learn a 

new multi-level building rather than providing a “crutch” that may actually impair users’ 

spatial abilities in the long-run. In addition, one research endeavor addressed by this 

thesis is to evaluate new visualization techniques of multi-level buildings for developing 

indoor navigation systems, which distinguishes this research work from the research on 

visualization of single-plane outdoor space or a single-floor building. 

It is worth noting that although the concepts of multi-level built environments and 

multi-level indoor environments are interchangeable for the most part in this thesis, 

multi-level built environments are not necessarily “indoor”. For instance, overpasses or 

flyovers in the outdoor space are also multi-level built environments. This thesis focuses 

on the “multi-level” property rather than the “indoor” property of multi-level built 

environments. However, natural multi-layered environments (e.g., trees, burrow systems, 

caves) are beyond the scope of this thesis. 
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1.4 Outline of the Thesis 

The remainder of this dissertation is organized into the following chapters.  

Chapter 2 first reviews existing literature related to the neural representation of 

three-dimensional space and human wayfinding in multi-level built environments. On 

this basis, we define the concept of multi-level cognitive maps and propose the 

framework of multi-level cognitive map development. This is followed by a formal 

definition of multi-level spatial knowledge (i.e., the knowledge representation of 

multi-level cognitive maps). Finally, a series of cross-level spatial tasks are designed to 

evaluate users’ formed multi-level cognitive maps. 

Chapter 3 first describes the general methods pertaining to the majority of the 

experiments elaborated in this thesis. Next, we describe two preliminary experiments that 

investigate the efficacy of using virtual environments to study human mental 

representation in multi-level built environments. The two studies play an important role 

in setting the stage of the technical requirements needed in the subsequent work of this 

thesis. 

Chapter 4 describes four experiments (Experiments 1-4) that evaluate the 

environmental factors, including multi-level structural and topological properties and 

global landmarks, on the development of multi-level cognitive maps. Finally, the 

implications of the findings for architectural design are provided.  
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Chapter 5 describes three experiments (Experiments 5-7) that evaluate several 

visualization interfaces on the development of multi-level cognitive maps. The 

implications of the findings for the development of visualization techniques used in 

indoor navigation systems are provided.  

Chapter 6 summarizes the major contributions of this thesis and provides brief 

sketches of future work. 

Finally, the appendix provides a glossary of all concepts used in this thesis. 

 



 

10 

 

   

CHAPTER 2 

BACKGROUND 

2.1 Multi-level Cognitive Maps 

In his seminal book, The Image of the City (1960), Kevin Lynch states that “there 

is a consistent use and organization of definite sensory cues from the external 

environment. This organization is fundamental to the efficiency and to the very survival 

of free-moving life” (Lynch, 1960). This mental organization is often modeled as a 

cognitive map, first coined by Tolman (1948), referring to an enduring, observer-free 

spatial representation of the environment. Tolman used the term cognitive map 

metaphorically to suggest that animals could use spatial information as if this information 

was recorded in a map-like manner (Golledge, 1999). In the field of human spatial 

cognition, it is also widely accepted that to undertake spatial behaviors such as driving to 

work, or to make spatial decisions like planning a route from home to a shopping mall, 

we rely on the support of cognitive maps (see reviews in Golledge, 1999; Kitchin & 

Blades, 2002; Lynch, 1960; Montello & Freundschuh, 2005).  

Humans have a long history of curiosity about the nature of space as well as the 

mental representation of space in the brain. For instance, Newton argued that space is an 

objective and absolute entity (Newton, 1687), whereas Kant believed that space is an a 
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priori mental framework that our mind uses to coordinate external sensations (Kant, 

Müller, & Noiré, 1881). However, very little progress had been made in understanding 

how humans encode physical space in the brain until O’Keefe and Dostrovsky (1971) 

found that the neurons in the hippocampus, termed “place cells”, become active when the 

animal traverses through a particular location in space (O’Keefe & Dostrovsky, 1971; 

O’Keefe & Nadel, 1978). This discovery catapulted the hippocampus to the forefront of 

research on the neural mechanisms of spatial learning and memory. Since then, more than 

four decades of extensive research in neurophysiology have confirmed that humans have 

specific kinds of neurons (e.g., place cells in the hippocampus, grid cells, head direction 

cells, and border cells in the medial entorhinal cortex and adjacent regions) that provide 

the basis for representation of the spatial environment in the brain (Doeller, Barry, & 

Burgess, 2010; Hafting, Fyhn, Molden, Moser, & Moser, 2005; Moser, Kropff, & Moser, 

2008; Nadel, 1991; O’Keefe, Burgess, Donnett, Jeffery, & Maguire, 1998; O’Keefe & 

Nadel, 1978). Place cells were suggested to provide animals a dynamic and continuously 

updated representation of allocentric space and their own positions in that space (Moser 

et al., 2008; Nadel, 1991; O’Keefe & Nadel, 1978). Grid cells in the medial entorhinal 

cortex collectively signaled the rat’s changing position with a precision similar to that of 

place cells in the hippocampus, except that each cell had multiple firing fields (Fyhn, 
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Molden, Witter, Moser, & Moser, 2004); grid cells were suggested to possibly be the 

elements of a metric system for spatial navigation (Hafting et al., 2005). 

In recent years, the neural representation of three-dimensional space has attracted 

increasing attention. For instance, Hayman, Verriotis, Jovalekic, Fenton, and Jeffery 

(2011) trained rats to walk on a vertical climbing wall (‘pegboard’) and along a helical 

track. The experimenters recorded rats’ neural activities of place cells and grid cells while 

they moved on these two setups. The results showed that the firing fields of place cells 

and grid cells were all elongated in the vertical dimension more than in the horizontal 

dimensions. Thus, the authors argued that the representation of three-dimensional space 

in the rat’s brain is less precise in the vertical dimension than in the horizontal dimension 

(Hayman et al., 2011). However, Ulanovsky (2011) counter-argued that anisotropic 

encoding of three-dimensional space found in this study was due to the rat’s body being 

positioned mostly horizontally and thus their movement patterns were biased toward the 

horizontal plane. In support, Yartsev and Ulanovsky (2013) found evidence that the 

hippocampus can represent three-dimensional space by a uniform and nearly isotropic 

rate code along three axes, as with Egyptian fruit bats (Yartsev & Ulanovsky, 2013). 

However, no evidence for such 3D representations has been observed in humans. By 

contrast, Jeffery, Jovalekic, Verriotis, and Hayman (2013) suggested a bicoded 

representational structure in which space in the plane of locomotion is represented 
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differently from space in the orthogonal axis. On this basis, they argued that “the 

mammalian spatial representation in surface–traveling animals comprises a mosaic of 

these locally planar bicoded map fragments rather than a fully integrated volumetric map” 

(Jeffery et al., 2013), as depicted in Figure 2.1.  

 

Figure 2.1. Hypothetical structure of the cognitive map in a dimensionally complex 

environment (adapted from Jeffery et al., 2013). 

There has been a lively debate in the literature concerning the efficacy of this 

bicoded representation, and little is known about whether humans are born with the 

capacity to construct true 3D spatial representations in the brain (Hölscher, Büchner, & 

Strube, 2013; Jeffery et al., 2013; Klatzky & Giudice, 2013; Wang & Street, 2013). For 

instance, Schultheis and Barkowsky (2013) argued that the lack of empirical evidence 

supporting a three-dimensional volumetric representation in the brain of 

surface-travelling animals is more indicative of the necessity rather than the ability to 

maintain such representational structures, as for many spatial tasks the vertical 
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information is either irrelevant to the task or partly redundant with horizontal information. 

Burt de Perera, Holbrook, Davis, Kacelnik, and Guilford (2013) agreed that the 

representation of three-dimensional space is probably bicoded. However, they thought it 

is unlikely that the vertical axis is stored “contextually” without distance or direction 

metrics. Hölscher, Büchner, and Strube (2013) described that some participants in their 

experiments consistently reported imagining the indoor environment from an external 

perspective, with walls and floors like glass, so they argued that the “glass doll 

house”-like representation requires a “consistent” representation of the vertical dimension. 

In sum, little hard evidence is available to support whether humans are born with the 

capacity to construct true three-dimensional (3D) spatial representations in the brain. On 

the other hand, the bicoded three-dimensional spatial encoding model (Jeffery et al., 2013) 

is not widely accepted as the form of encoding the three-dimensional world.  

This thesis is primarily concerned with human constructed mental representation 

of multi-level built environments. It does not endeavour to investigate whether humans 

are capable of constructing a true 3D spatial representation of multi-level built 

environments, which is beyond the scope of this thesis. Rather, we focus on the 

functional properties of this mental representation—multi-level cognitive maps should be 

sufficient for supporting cross-level spatial behaviors in complex multi-level buildings 

(e.g., accurately pointing and wayfinding to targets located on different floors as 
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discussed in Section 2.4). Thus, in this thesis the concept of multi-level cognitive maps is 

proposed based on empirical findings and well established conjecture. Previous literature 

has found clear empirical evidence that humans can encode elevation and a z-axis offset 

(i.e., vertical distance between floors) in both outdoor and indoor spaces, even if not in a 

precise 3D manner (Garling, Böök, Lindberg, & Arce, 1990; Tlauka, Wilson, Adams, 

Souter, & Young, 2007). For example, clear evidence has been found that differences in 

elevation of terrain are encoded in cognitive maps of outdoor environments (Garling et al., 

1990). With regard to multi-level built environments, a growing body of evidence 

suggests that the integration of multi-level spatial knowledge (learned from different 

floors) can also be consolidated into a globally coherent mental representation, although 

this process is found to be challenging and error-prone for humans (Giudice & Li, 2012; 

Hölscher et al., 2006; Li & Giudice, 2013; Soeda et al., 1997; Tlauka et al., 2007; Vidal, 

Amorim, & Berthoz, 2004). For instance, Vidal, Amorim, and Berthoz (2004) suggested 

that human mental representations of buildings could be conceptualized as a set of 

vertically superimposed 2D cognitive maps having the vertical segments encoded as 

junctions between the individual maps. Likewise, the results of a series of empirical 

experiments conducted in large buildings by Hölscher and colleagues suggested that 

humans have a tendency to memorize multi-level indoor environments as a collection of 
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floors instead of a volumetric representation (Hölscher, Büchner, Meilinger, & Strube, 

2009; Hölscher et al., 2006).  

On the basis of this empirical evidence, we propose that multi-level cognitive 

maps have a multi-layered structure, which is different from the concept of a true 3D 

spatial representation, as the vertical axis of a multi-level cognitive map is not encoded 

with the same representational structure and fidelity as the horizontal plane. Thus, in this 

thesis, we partially adopt the bicoded three-dimensional spatial encoding model (Jeffery 

et al., 2013). However, the bicoded spatial encoding model did not consider how 

navigators move between floors and how they integrate cross-floor spatial knowledge 

during vertical travel, both of which are described in this thesis.  

In Section 2.2, we propose a framework of multi-level cognitive map 

development. On this basis, in Section 2.3 we formally define a multi-level cognitive map 

consisting of (1) a set of super-imposed 2D cognitive maps; (2) between-floor 

connectivity information (e.g., elevators, staircases, escalators); (3) between-floor 

alignment information (e.g., indicating what is directly above/below one’s current 

location); and (4) encoding of the z-axis offset (e.g., rough estimates of floor heights). In 

Section 2.4, we describe our design of a series of cross-level spatial tasks to evaluate 

users’ development of multi-level cognitive maps and illustrate the logical relation 

between multi-level cognitive maps and cross-level spatial tasks. 
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2.2 The Framework of Multi-level Cognitive Map Development 

To build a cognitive map of a new or unexperienced environment, people usually 

have to learn it by perceiving surrounding space and thus acquiring spatial knowledge 

about the environment (Downs & Stea, 1973). Siegel & White (1975) described a 

theoretical framework for spatial knowledge acquisition over time when learning new 

environments. In their framework, spatial knowledge is classified into three levels: 

landmarks, route knowledge and survey knowledge. Landmarks refer to distinctive 

objects or scenes stored in memory. Distant landmarks such as towers or mountain peaks 

that are visible from a large area of the environment are usually termed global landmarks; 

by contrast, local landmarks are visible only from a small distance (Steck & Mallot, 

2000). Route knowledge is the knowledge of travel paths that connect landmarks. A route 

is “a trace in the environment of a traveled sequence of path segments and turn angles 

that are followed in order to get from an origin to a destination” (Golledge, 1999). Survey 

knowledge is defined as a configurational representation of spatial relationships between 

non-linearly-aligned sets of environmental features such as routes and landmarks, 

organized within a common spatial reference frame or spatial reference system (Montello, 

1998). A related term, region, represents perceived and encoded representations in spatial 

memory in which locations are grouped within a common spatial reference frame 

(Wiener & Mallot, 2003; Wiener, Schnee, & Mallot, 2005). An important characteristic of 
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survey knowledge is that navigators can infer the spatial relations between locations even 

if they have never traveled between these locations (Montello, 1998). To acquire survey 

knowledge of a new environment through active exploration, navigators have to integrate 

the linearized geometry of the route, landmarks on and off the route, and specific regions 

through which routes pass, into a configurational layout (Golledge, 1999). The traditional 

framework of spatial knowledge acquisition argues that (1) landmarks are the first to be 

acquired, and (2) route knowledge does not contain metric information, e.g., distances and 

directions. However, Montello (1998) counter-argued that there is no stage in which only 

landmark or only route knowledge exists, but some configurational knowledge begins to 

be acquired upon first exposure, which becomes more complete and detailed with 

increasing experience in the environment. 

As discussed above, survey knowledge is based on the integration of acquired 

spatial knowledge into a common spatial reference system. McNamara, Sluzenski, and 

Rump (2008) define a spatial reference system as a relational system that consists of 

reference objects, located objects, and the spatial relations that may exist among them. 

Previous literature generally distinguishes spatial reference systems as either being 

egocentric or allocentric (Hart & Moore, 1973). With the egocentric reference system, the 

objects and spatial relationships of the environment are organized with respect to the 

observer’s positions and orientations, whereas in the allocentric reference system, the 
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location and orientation of objects are specified with respect to the environment. Route 

knowledge is usually obtained from direct experience during navigation from a 

navigator’s perspective, so it is often considered egocentric. Survey knowledge is 

allocentric, as it is not directly available from first-person perceptual experience and 

needs to be constructed through the integration of spatial knowledge learned from 

different locations. As discussed in Section 2.1, cognitive maps refer to observer-free, 

allocentric spatial representations of an environment, so in this thesis the concepts of 

users’ formed cognitive maps and users’ learned survey knowledge are interchangeable 

for the most part.  

With respect to spatial reference systems of multi-level built environments, 

previous literature has suggested that the intrinsic structural characteristics of multi-level 

indoor spaces influence one’s spatial representation of a building in that they may be 

coherent locally but not globally (Carlson et al., 2010). To better understand the meaning 

of “local” and “global” with respect to multi-level built environments, it is necessary to 

introduce the concept of spatial scale. Montello (1993) identified four scales of space and 

differentiated between figural space (object-sized spaces perceived from one vantage 

point), vista space (room-sized spaces perceived from one vantage point but allowing for 

head rotation), environmental space (perceived by moving through the space) and 

geographical space (experienced from symbolic representations, such as maps). 
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According to Montello (1993), a room is a vista space, as one sees the entire spatial 

extent from a single vantage point with head rotation. It is similar for lobbies, atriums, 

etc., but not for most building floors since a floor often has many occlusions that block a 

navigator’s view and limit perceptual access from one point, even if one rotates in place. 

Thus, most floors of buildings, unless they are completely open, have to be perceived by 

moving through the space and thus, by definition, are environmental spaces. Depending 

on the spatial scale, spatial reference systems can be divided into two categories: global 

reference systems and local reference systems (Gärling, Lindberg, Carreiras, & Book, 

1986; Meilinger, Riecke, & Bülthoff, 2013). A global reference system is encoded in the 

entire environmental space, so places and spatial relations can be learned relative to this 

global reference. By contrast, a local reference system is encoded for a local vista space 

and it varies from one vista space to another (Gärling et al., 1986). However, local 

reference systems may be interrelated and serve as elements in higher-level reference 

systems (McNamara et al., 2008; Meilinger et al., 2013). For instance, the reference 

systems of rooms may serve as elements in a higher-order reference system defining the 

spatial relations within a floor while the reference systems of floors subsequently serve as 

elements in a higher-order reference system within a whole building. 

The concept of spatial reference systems is very important to this thesis, as we 

propose that multi-level cognitive maps are constructed and integrated from local spatial 
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knowledge learned from different floors, and one major research endeavor addressed by 

this thesis is to investigate how people integrate spatial knowledge learned from different 

floors (local spatial reference systems) into a multi-level cognitive map (global spatial 

reference system). Meilinger (2008) proposed the network of reference frames theory to 

describe the process of integrating local spatial reference frames into a global spatial 

reference frame in single-plane outdoor space. The basic unit in the network is the 

allocentric spatial reference frame of a vista space. An edge in the network defines the 

so-called perspective shift that is necessary to move from one reference frame to the next, 

which consists of both a translation and a rotation component (Meilinger, 2008). In this 

thesis, we adopt the network of reference frames theory and extend it into multi-level 

built environments. First, a node in the network of reference frames represents the 

allocentric spatial reference frame of a floor. Second, the edge in the network 

(perspective shift) represents a navigator’s movement from one floor’s reference frame to 

the next floor. The rotation component of this perspective shift is denoted by γ, as seen in 

Figure 2.2.  
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Figure 2.2. Between-floor perspective shift γ. The red arrows indicate the reference 

directions of the two floors. 

Previous literature has discussed three strategies for acquiring survey knowledge 

of a new environment: (1) active exploration of the environment according to specific 

rules or using controlled navigational practices such as path integration; (2) using 

configurations of landmarks to determine navigators’ locations and directions; and (3) 

using secondary information sources such as maps, videos, and verbal descriptions to 

learn about the environment (Gallistel, 1990; Golledge, 1999; Loomis, Klatzky, Golledge, 

& Philbeck, 1999). In this thesis, we argue that in order to learn a new multi-level built 

environment, navigators have to depend jointly on these three strategies. In the following 

three subsections, we will discuss how navigators integrate cross-level spatial knowledge 

into a multi-level cognitive map based on the three strategies. 
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2.2.1 Integrating Cross-level Spatial Knowledge Depending on Path Integration 

Learning an environment by experiential procedures such as learning a route and 

being aware of proximal and distant environmental features is perhaps the most common 

approach used by humans (MacEachren, 1992). This section discusses how navigators 

integrate cross-level spatial knowledge through active search and exploration of a 

multi-level building. We will begin by introducing a few important terms associated with 

navigation, illustrated in Figure 2.3.  

 

Figure 2.3. Depiction of navigational terms (adapted from Loomis, Klatzky, Golledge, & 

Philbeck, 1999). 

As shown in Figure 2.3, reference direction refers to the orientation of a reference 

frame. In outdoor space, navigators usually use north as the reference direction based on 

azimuthal cues such as the sun. In this thesis, we focus on multi-level built environments, 

so a reference direction refers to the orientation of a local reference frame, perhaps a 
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room or a floor. Previous literature has suggested that the orientation of a local reference 

frame usually originates from the initial experience with that space (e.g., after entering a 

floor), the main experienced orientation within this space, and its overall structure (e.g., 

the main orientation of a room or a floor) (Kelly & Mcnamara, 2008; McNamara et al., 

2008; Meilinger et al., 2013; O’Keefe, 1991). Course and heading are the direction of a 

navigator’s velocity vector and facing direction, respectively, measured with respect to 

the reference direction, and bearing refers to the direction from the navigator to a 

landmark (Gallistel, 1990; Loomis, et al., 1999). 

With respect to multi-level buildings, a prominent and fundamental characteristic 

of learning a multi-level built environment is considering the vertical 

transitions—navigators use vertical connectors (e.g., elevators, staircases, escalators) to 

navigate between floors. It is necessary to define a few concepts involved in this process 

that are important for illustrating how navigators integrate between-floor spatial 

knowledge.  

The transition point is defined in this thesis as representing a point where 

navigators enter or exit a floor. The notion of transition point is different from the related 

term, decision point, which usually refers to the point where two route-segments meet or 

the intersection of two or more corridors or travel paths (Richter & Klippel, 2005). 

Transition points are the connecting points of two floors. An outdoor transition point is 
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the intersection between two adjacent regions’ common boundary and a route that goes 

through the two regions, whereas a transition point in multi-level built environments is 

the point where users pass through a between-floor portal such as an elevator door to 

enter or exit a floor by a vertical connector. A transition point has one direction based on 

the orientation of a between-floor portal. Given that we focus on between-floor spatial 

knowledge integration, and for the sake of simplicity, we assume that a navigator’s 

velocity vector and facing direction are the same as the transition point’s direction when 

entering or exiting a between-floor portal, as pictured in Figure 2.4. 

 

Figure 2.4. A navigator’s velocity vector, facing direction and transition point direction 

when entering or exiting a between-floor portal. 

When people navigate between floors, they will pass a pair of transition points. 

For example, as shown in Figure 2.5, there is one pair of transition points (p1 and p2) 

connecting Floor 1 and Floor 2. Navigation between the two floors involves a vertical 

transition offset (h), a horizontal transition offset (d), and a transition angular offset (α).  
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Figure 2.5. Transition points in multi-level built environments. The blue arrows indicate 

the directions of a pair of transition points (p1 and p2). 

The vertical transition offset is the z-axis offset between this pair of transition 

points located on different floors. The horizontal transition offset is the offset between the 

transition point (p1) and the projection of the corresponding transition point (p2’) on the 

former transition point’s floor (e.g., floor 1). If the two transition points are vertically 

aligned, as when an elevator connects the pair, the horizontal offset L is 0. The transition 

angular offset is the difference between navigators’ facing direction at a pair of transition 

points. The transition angular offset is termed the between-floor heading shift (denoted by 

α) in this thesis. In addition, the term portal-floor heading shift is used in this thesis to 

represent the angular offset between the reference direction of a floor and a navigator’s 

heading when entering or exiting a between-floor portal. The portal-floor heading shifts 

on two floors are denoted as β1 and β2 respectively, as shown in Figure 2.6. 
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Figure 2.6. Portal-floor heading shifts (β1 and β2) on two floors. The red arrows indicate 

the reference directions of the two floors. The blue arrows indicate the directions of a pair 

of transition points. 

So far, we have introduced four heading shifts during vertical transition: (1) a 

perspective shift γ; (2) a between-floor heading shift α; and (3) two portal-floor heading 

shifts (β1, β2). To maintain orientation during vertical transitions, navigators have to 

update heading, which can be accomplished either by direct sensing or by integrating turn 

rate (Loomis, et al., 1999). However, navigators usually do not have direct perception of 

both floors during vertical transition due to occlusion from elevator shafts or stairwells. 

Instead, they have to sense rotary accelerations, depending on proprioceptive, vestibular, 

or optic cues, and doubly integrate this information to obtain rotational displacements 

(Loomis, et al., 1999). This process is termed path integration (also called 

dead-reckoning), referring to the updating of position and heading on the basis of 

velocity and acceleration information (Loomis, et al., 1999; Loomis et al., 1993b).  
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It is worth noting that during vertical transition navigators still have direct 

perception through visual and other sensing of their immediate surroundings such as the 

space within an elevator. The perceived information provides important cues about the 

between-floor heading shift. For instance, if an elevator has separate entrance and exit 

doors that are offset by 90°, they can directly perceive that the between-floor heading 

shift is 90°. However, when a multi-level building has no between-floor visual access and 

no visual access between indoor and outdoor spaces (called OI-spaces), navigators have 

to depend on the between-floor heading shift and the two portal-floor heading shifts β1 

and β2 in order to integrate cross-level spatial knowledge, as illustrated in Figure 2.7. 

However, during vertical transition the portal-floor heading shift is not directly 

perceivable. Thus, we argue that path integration plays an important role in supporting 

the integration of cross-level spatial knowledge during vertical transition. Likewise, 

Loomis, et al. (1999) described a few natural occurring examples of using path 

integration, stating that: “Fire fighters entering a smoke-filled building depend on path 

integration for positional awareness. Cave explorers and divers face the challenge of 

having to do path integration in all three spatial dimensions. Finally, pilots flying under 

instrument conditions while being vectored by ground controllers must engage in 

imagined path integration to maintain an estimate of their relationship to their destination 

and any hazardous terrain” (p. 150). In all these scenarios, although people still have 
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direct perception of their immediate surroundings, path integration plays a critical role in 

positional and directional awareness. Thus, for simplicity in this thesis we use the term 

path integration to describe the process of integrating cross-level spatial knowledge 

during vertical travel. The process of calculating the perspective shift γ based on the 

between-floor heading shift α and two portal-floor heading shifts β1 and β2 is illustrated 

in Figure 2.7: (1) γ = β2 - (β1 - α), (2) γ = β2 - (β1 + α), (3) γ = β2 - (α - β1), (3) γ = (β1 - 

α) + β2, (4) γ = (β1 - α) - β2, (5) γ = (β1 + α) - β2, (6) γ = (α - β1) - β2, and (7) γ = β2+ 

(β1 + α).  

 

Figure 2.7. Calculating perspective shift γ based on the between-floor transition shift α 

and two portal-floor angular offsets (β1 and β2).  
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It is not surprising that confusing staircases have been identified as a main cause 

for people getting lost inside buildings (Hölscher et al., 2006), as the path integration 

process that we argue is critical for integrating cross-level spatial knowledge is very 

challenging (Etienne & Jeffery, 2004; Klatzky, Beall, & Loomis, 1999; Loomis, et al., 

1999; Loomis et al., 1993a). After navigators learn the between-floor perspective shift γ, 

they can calculate between-floor alignment information based on the between-floor 

perspective shift γ and the horizontal transition shift (d) of a pair of transition points (p1, 

p2), as seen in Figure 2.8. 

 

Figure 2.8. Calculating between-floor alignment information based on the perspective 

shift γ and the horizontal transition offset d.  
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Given that complex multi-level structural and topological properties such as 

misalignment between floors may increase the difficulty of path integration and 

subsequent between-floor alignment calculation, in this thesis we propose that complex 

between-floor structural and topological properties impair users’ development of 

multi-level cognitive maps (Hypothesis 1). This hypothesis is evaluated in Chapter 3 

through Experiments 1-3. 

2.2.2 Integrating Cross-level Spatial Knowledge based on Global Landmarks 

In the previous section, we discussed the situation of when a multi-level building 

has no between-floor visual access and no visual access between OI-spaces. In such cases, 

navigators have to obtain rotational displacements by updating heading information 

during vertical transition in order to integrate cross-level spatial knowledge. However, 

this path integration process has been found to be difficult for human spatial cognition 

(see review by Loomis, et al., 1999). In this section, we will explore what happens when 

a multi-level building has visual access to a global landmark such as a nearby prominent 

building or an atrium as well as how navigators may use the global landmark to integrate 

cross-level spatial knowledge.  

Previous literature has shown that navigators use configurations of landmarks to 

determine their location or heading in a process called piloting (Gallistel, 1990; Loomis, 



 

32 

 

   

et al., 1999). In his seminal book, The Organization of Learning (1990), Gallistel 

discussed several methods of piloting, such as computing position using bearing and 

distance to a single landmark, computing position using distances to multiple landmarks 

(trilateration), and computing position using bearings or bearing differences to multiple 

landmarks (triangulation). For instance, as illustrated in Figure 2.9, navigators can use the 

estimated distance (d) that the observer has moved between two positions (p1 and p2) and 

the two bearings of the two points (θ1 and θ2) for triangulation of the distance (D) 

between p2 and the landmark. 

 

Figure 2.9. Computing distance (D) between p2 and the landmark using estimated 

distance (d) between two positions (p1 and p2) and two bearings of the two positions (θ1 

and θ2; adapted from Gallistel, 1990). 

Similarly, in multi-level built environments, navigators can calculate the distance 

and angle between two positions (p1 and p2) located on two floors based on bearings of 
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the two positions (θ1 and θ2) and estimated distances (d1 and d2) between the two 

positions and the landmark, as demonstrated in Figure 2.10. 

 

Figure 2.10. Computing distance (D) between two positions (p1 and p2) based on 

bearings of the two positions (θ1 and θ2) and estimated distances (d1 and d2).  

Although this formal process of bearing-based distance and direction calculation 

is more accurate and precise than the path integration process introduced in the previous 

section, the formal process is not intuitive and unlikely to be used in our daily lives. In 

addition, accurate distance and angle estimation between two positions located on two 

floors is not critically important or necessary for accurate cross-level spatial knowledge 

integration, as in this process, navigators are primarily concerned with the between-floor 

perspective shift γ. Next, we will discuss how navigators use global landmarks to learn 

between-floor perspective shift γ. 
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The example depicted in Figure 2.11 assumes that there are two positions (p1 and 

p2) located on two floors and there is no direct visual access between the two positions. 

However, if navigators can see a global landmark from both locations, they can calculate 

the between-floor perspective shift γ based on the two bearings (θ1 and θ2) of the two 

positions (i.e., angular offsets between the orientation of the global landmark and the two 

floors’ reference directions). For the example shown in Figure 2.11, perspective shift γ = 

θ1 + θ2.  

 

Figure 2.11. Estimate between-floor perspective shift γ based on the bearings of two 

positions (p1 and p2).  

As discussed in the previous section, in order to integrate cross-level spatial 

knowledge based on path integration, navigators need three angles including the 
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between-floor heading shift α and two portal-floor heading shifts β1 and β2. In contrast, 

navigators need only two angles (two bearings θ1 and θ2) to integrate cross-level spatial 

knowledge based on global landmarks. Thus, cross-level spatial knowledge integration 

based on global landmarks requires less computation than that solely based on path 

integration. In addition, the perceived information (e.g., visual access to a global 

landmark) could be helpful to confirm or validate the heading updating process and to 

reduce spatial uncertainty accumulated in the path integration process. Thus, we 

anticipate that visual access to a global landmark from within a building promotes users’ 

development of multi-level cognitive maps (Hypothesis 2). This hypothesis is evaluated 

in Chapter 4 through Experiments 4-5. 

Previous literature on qualitative spatial reasoning (QSR) has discussed both 

reasoning about orientations in a global reference frame (using cardinal directions such as 

North) and reasoning about relative directions in local reference frames (using relative 

directions such as left/right and front/back; see Clementini, Felice, & Hernández, 1997; 

Freksa, 1992; Goyal & Egenhofer, 1997; Moratz & Ragni, 2008). This reasoning process 

can be refined based on the knowledge of distance (see Goyal & Egenhofer, 2001; 

Moratz & Ragni, 2008; Moratz & Wallgrün, 2012). Although the formalization of 

positional reasoning in multi-level built environments is outside the scope of this thesis, 

previous research on QSR offers important implications for cross-level spatial knowledge 



 

36 

 

   

integration: navigators can use global landmarks to estimate relative direction between 

two positions located on two floors, which is proposed to be cognitively easier than the 

aforementioned bearing-based direction calculation. 

Figure 2.12 shows an example in which there are two positions (p1 and p2) 

located on two floors and no direct visual access between these two positions. Navigators 

can see the global landmark, a nearby prominent building, from both positions. If they 

use the orientation of the building as the local reference direction, they can learn that p1 

is located at the left/back of the landmark and p2 is located at the right/back of the 

landmark. According to previous research on reasoning of relative directions, navigators 

can infer that p2 is located either at the right, right/front, or right/back of p1. In addition, 

if navigators use estimated distances between the two positions and the global landmark, 

the estimated relative direction between the two positions will be further refined, 

providing important cues for cross-level spatial knowledge integration and the integration 

of OI-spaces. Thus, we anticipate that if a global landmark is visible from both indoor 

and outdoor spaces, it will facilitate both cross-level spatial knowledge integration and 

the integration of OI-spaces (Hypothesis 3). This hypothesis is evaluated in Chapter 4 

using Experiment 5. 
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Figure 2.12. Estimating relative direction between two positions (p1 and p2).  

2.2.3 Using Visualization Interfaces to Facilitate Cross-level Spatial Knowledge 

Integration 

In the previous section, we described the rationale for our prediction that global 

landmarks are anticipated to promote users’ development of multi-level cognitive maps 

and to facilitate the integration of OI-spaces. However, global landmarks are often not 

available in multi-level indoor environments, due to: (1) interior objects such as walls, 

ceilings, and other obstacles limiting visual access, and (2) the external windows or large 

atriums that might be used to facilitate access are frequently only visible from specific 

locations in the building. As a result, the advantage of global landmarks serving as a fixed 

spatial frame of reference is often greatly reduced when learning and navigating through 

indoor environments (Giudice, Walton, & Worboys, 2010). If visual access to global 

landmarks is found to facilitate the development of a multi-level cognitive map, as we 
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predict, the question remains as how to best leverage this benefit for the majority of 

complex buildings that lack direct visual access to such landmarks. It is obviously 

impractical to modify the physical building to increase access but an alternative and 

economical solution is to use visualization techniques such as Augmented Reality (AR). 

AR technology can be used to superimpose virtual information on the physical 

environment from a perception-friendly first-person perspective and thus enhance users’ 

spatial awareness of the environment by showing occluded information that they 

otherwise cannot directly perceive (Dey & Sandor, 2014). If we can use AR technology 

to increase visual access to global landmarks, the benefit of these cues for providing a 

fixed frame of reference can be extended to all matter of complex multi-level buildings 

and thereby facilitate users’ development of multi-level cognitive maps (Hypothesis 4). 

This issue is investigated in Chapter 5 through Experiments 5-6. 

In addition to AR visualizations, we investigate how schematic maps as 

implemented on mobile devices affect users’ development of multi-level cognitive maps. 

Schematic maps refer to maps that omit unnecessary details and use simplified structures 

to represent meaningful entities and spatial relationships, such as public transportation 

maps, metro maps, and tourist city maps. These schematic maps are argued to be 

cognitively efficient for supporting users in learning environments (Avelar & Hurni, 2006; 

Casakin, Barkowsky, Klippel, & Freksa, 2000; Klippel, Richter, Barkowsky, & Freksa, 
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2005; Ware, Taylor, Anand, & Thomas, 2006; Schmid, Richter, & Peters, 2010; Schmid, 

2008). Most currently available indoor digital maps such as Google Indoor maps, 

however, can only show one floor at a time, meaning users can obtain only visual access 

to individual floors and thus have no direct means for integrating knowledge between 

floors. Although prevalent, this type of map requires that users manually integrate spatial 

knowledge between multiple layers over time, and this temporal and spatial integration is 

likely hard, inaccurate, and leads to errors, as are known for the development of 

multi-level cognitive maps (Carlson et al., 2010; Giudice & Li, 2012; Hölscher et al., 

2006; Li & Giudice, 2013; Montello & Pick, 1993; Passini, 1992; Richardson et al., 1999; 

Soeda et al., 1997). In this thesis, we propose that schematic maps that effectively convey 

multi-level building information (e.g., providing users with access to between-floor 

alignment) alleviate the challenge of integrating cross-level spatial knowledge 

(Hypothesis 5). This hypothesis is evaluated in Chapter 5 using Experiment 7.  

AR visualization usually provides perception-friendly egocentric spatial 

information in order to enhance users’ spatial awareness of the environment, but it 

requires navigators to integrate egocentric spatial knowledge obtained from different 

places into an allocentric cognitive map. Schematic maps directly provide allocentric 

spatial information regarding the environment, but they are often difficult to learn and 

can lead to a phenomenon well-known in the spatial cognition literature as the alignment 
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effect. It occurs when the reference direction (e.g., the upward direction) in a visual or 

haptic map is misaligned with a navigator’s facing direction in the environment, causing 

the judgment of the direction of environmental features represented on the map to be 

slower and less accurate than when the map is aligned with their facing direction 

(Giudice, Betty, & Loomis, 2011; Levine, Jankovic, & Palij, 1982; Mou, McNamara, & 

Valiquette, 2004; Presson, DeLange, & Hazelrigg, 1989; Waller, Montello, Richardson, & 

Hegarty, 2002).  

Schematic maps usually maintain a global reference frame (e.g., using a north-up 

display), thus emphasizing global awareness, whereas AR visualizations often employ an 

egocentric frame, thereby improving local guidance. However, emphasizing solely global 

awareness or local cues is not optimal for cognitively motivated visualization techniques, 

as both types of information are important for navigation (Taylor et al., 2008). Therefore, 

we studied both AR visualizations (Experiments 5-6) and schematic maps (Experiment 7) 

in aiding the development of multi-level cognitive maps.  

The difference between the effects of the two types of visualization interfaces is 

outside the scope of this thesis. However, it is worth noting that an important design 

principle of cognitively motivated visualization techniques for indoor navigation systems 

is to systematically combine the advantages of different types of visual interfaces (e.g., 

schematic maps and AR visualizations) in what has been called a details-on-demand 
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visual interface in a previous study (Li & Giudice, 2012a; see further discussion in 

Section 6.2.2). 

2.3 Multi-level Spatial Knowledge 

The previous sections discussed three strategies of cross-level spatial knowledge 

integration, including active exploration (path integration; Section 2.2.1), using 

configurations of landmarks to determine navigators’ locations and directions (piloting; 

Section 2.2.2), and learning about the environment through secondary information 

sources such as schematic maps and AR visualizations (Section 2.2.3). The final product 

of this integration process is referred to in this thesis as multi-level spatial knowledge. 

Multi-level spatial knowledge is constructed by integrating single-level spatial 

knowledge from different floors (local reference systems) into a common spatial 

reference frame (global reference system) and described in terms of multi-level 

landmarks, multi-level route knowledge and multi-level survey knowledge.  

Multi-level landmarks are distinctive objects or scenes that are visible from 

multiple locations/levels of a multi-level built environment. In this thesis, multi-level 

landmarks are visible from all floors of a building and thus are interchangeable with 

global landmarks hereinafter for consistency. Multi-level route knowledge is the 

knowledge of travel paths that connect between-floor locations. Navigators obtain this 
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multi-level route knowledge from direct experience during navigation, meaning that 

multi-level route knowledge is based on an egocentric spatial reference frame. By 

contrast, multi-level survey knowledge is a configurational representation of the metric 

spatial relationship between environmental features across multiple floors organized 

within a common spatial reference frame. Multi-level survey knowledge is allocentric, as 

it needs to be constructed through the integration of spatial knowledge learned from 

different locations/floors. In the following paragraphs, we first define single-level survey 

knowledge (i.e., survey knowledge formed in a single-plane environment) and then 

extend the definition to multi-level survey knowledge. 

In this thesis, a configurational representation of a region/floor (single-level 

survey knowledge) is described as consisting of: (1) name of the region (ID); (2) a 

reference direction vector (𝑅𝐷⃗⃗ ⃗⃗  ⃗); (3) a finite collection of places P = {𝑝1, 𝑝2, … , 𝑝𝑛}, 𝑝𝑖 ∈

ℝ2 , where ℝ2 is a Euclidean space; (4) a finite collection of routes R = {𝑟1, 𝑟2, … , 𝑟𝑛}, 

𝑟𝑖  is a route described by an ordered set of places {𝑥1, 𝑥2, … , 𝑥𝑛}, 𝑥𝑖 ∈ 𝑃, such that 

(𝑥1, 𝑥2), (𝑥2, 𝑥3), … , (𝑥𝑛−1, 𝑥𝑛) are segments of the route and the 𝑥𝑖 are distinct; and (5) 

metric relations of these places in terms of distances and directions, D = 

{𝑝1𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,  𝑝3𝑝4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, … , 𝑝𝑖𝑝𝑗⃗⃗ ⃗⃗ ⃗⃗  ⃗}, 𝑝𝑖, 𝑝𝑗 ∈ 𝑃, 𝑖 ≠ 𝑗.  

Cognitive maps should be able to support both metric relations and topological 

relations (Egenhofer & Franzosa, 1991), although the learned metric information is 
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typically fragmented and distorted (McNamara et al., 2008; Sadalla & Montello, 1989; 

Stevens & Coupe, 1978; Tversky, 1981, 1992). This thesis, however, is primarily 

concerned with metric relations in terms of distances and directions. As discussed in 

Section 2.2, if navigators have formed accurate survey knowledge of a region, they can 

infer the spatial relations between locations even if they have never traveled between 

these locations before (Montello, 1998), meaning that (1) navigators can accurately point 

between places within the region (single-level pointing task), and (2) navigators can 

accurately and efficiently perform wayfinding between places within the region using the 

shortest path (single-level wayfinding task). Wayfinding refers to a set of spatial processes 

allowing for the determination and execution of routes between an origin and a 

destination without prior knowledge of the route (See Golledge, 1999 for an excellent 

review of the literature on wayfinding behavior).  

On the basis of the definition of single-level survey knowledge, multi-level survey 

knowledge is then described as consisting of: 

1) A set of super-imposed single-level survey knowledge presentation. Let  𝐿𝑖 

be the survey knowledge of level 𝑖  in a set of super-imposed single-level survey 

knowledge LS =  {𝐿1, 𝐿2, … , 𝐿𝑛}, 𝑛 ∈ 𝑁, 𝑛 ≤ 𝑓𝑙𝑜𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟𝑠. If multiple floors of a 

building have the same (or similar) layouts, these floors could be mentally represented as 

one level in the multi-level cognitive map. In this thesis, different floors usually have 
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distinctive floor layouts, so for simplicity each single-level spatial knowledge 

representation corresponds with a single building floor. 

2) Between-floor connectivity information. 

As described in Section 2.2.1, when people navigate between floors, they must 

pass through a pair of transition points. Transition points are denoted as T = 

{𝑡 1𝑗, 𝑡 2𝑗, … , 𝑡 𝑖𝑗}, where 𝑡 𝑖𝑗  is a vector with a starting point 𝑡𝑖𝑗 𝜖 𝑃𝑗 , 𝑃𝑗 ⊂ 𝐿𝑗 . The 

direction of vector 𝑡 𝑖𝑗  is the orientation of the corresponding between-floor portal. 

Between-floor connectivity information is a finite collection of paired transition points. 

Let 𝑡𝑖𝑗⃗⃗⃗⃗  be a transition point 𝑡𝑖⃗⃗  on floor j and 𝑡𝑚𝑘⃗⃗ ⃗⃗ ⃗⃗   be a transition point 𝑡𝑚⃗⃗ ⃗⃗   on floor k. 

Between-floor connectivity information is denoted as 𝐶𝑗𝑘 . 

𝐶𝑗𝑘 = {(𝑡11⃗⃗⃗⃗  ⃗, 𝑡12⃗⃗⃗⃗  ⃗), (𝑡21⃗⃗ ⃗⃗  ⃗, 𝑡22⃗⃗ ⃗⃗  ⃗), … , (𝑡𝑖𝑗⃗⃗⃗⃗ , 𝑡𝑚𝑘⃗⃗ ⃗⃗ ⃗⃗  )}, 𝑖, 𝑗, 𝑘 ∈ 𝑁, 𝑗 ≠ 𝑘, 𝑗, 𝑘 ≤

𝑓𝑙𝑜𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟𝑠, 𝑡𝑖𝑗 ∈  𝑃𝑗 , 𝑃𝑗 ⊂ 𝐿𝑗 ,  𝑡𝑚𝑘 ∈  𝑃𝑘, 𝑃𝑘 ⊂ 𝐿𝑘.  The 𝑡𝑖𝑗  are not distinct, as 

one transition point can be connected to multiple transition points located on a different 

floor.  

3) Between-floor alignment information.  

Let 𝑝𝑖𝑗 be a place 𝑝𝑖 on floor 𝑗, and let  𝑝𝑖𝑗𝑘
′  be the vertical projection of 

place 𝑝𝑖𝑗 on floor 𝑘, where between-floor alignment information is a finite collection of 

paired places between 𝑝𝑖𝑗 and 𝑝𝑖𝑗𝑘
′ . Between-floor alignment information is denoted as 
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𝐴𝑗𝑘 . 𝐴𝑗𝑘 = {(𝑝11, 𝑝112
′ ), (𝑝12, 𝑝123

′ ),… , (𝑝𝑖𝑗, 𝑝𝑖𝑗𝑘
′ )}, 𝑖, 𝑗, 𝑘 ∈ 𝑁, 𝑗, 𝑘 ≤ 𝑓𝑙𝑜𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟𝑠, 𝑗 ≠

𝑘, 𝑝𝑖𝑗 ∈  𝑃𝑗 , 𝑃𝑗 ⊂ 𝐿𝑗 , 𝑝𝑖𝑗𝑘
′ ∈  𝑃𝑘, 𝑃𝑘 ⊂ 𝐿𝑘.  

4) Encoding of the z-axis.  

H = {ℎ12, ℎ21, ℎ26, ℎ64, … , ℎ𝑗𝑘}, 𝑗, 𝑘 ∈ 𝑁, 𝑗 ≠ 𝑘, 𝑎𝑛𝑑 𝑗, 𝑘 ≤ 𝑓𝑙𝑜𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟𝑠. 

As described in Section 2.1, there has been a lot of debate regarding the encoding 

resolution and fidelity of the z-axis in three-dimensional space. The bottom line, however, 

is that previous literature has shown that humans can roughly estimate distance between 

floors, although the estimations are distorted, with “relative downward errors in upward 

judgments and relative upward errors in downward judgments” (Jeffery et al., 2013; 

Tlauka et al., 2007; Wilson, Foreman, Stanton, & Duffy, 2004). For instance, for a 

three-story building with each floor being 12 feet high, if navigators stand on floor 1 and 

make upward distance judgments, their estimates of the floor height of the three-story 

building might be 11 feet (floor 1), 10 feet (floor 2) and 9 feet (floor 3). However, if 

navigators stand on floor 3 and make downward judgments, the floor heights of the 

building might be estimated as being 9 feet (floor 1), 10 feet (floor 2) and 11 feet (floor 3). 

Investigating the encoding and distortion of the z-axis dimension will be a research topic 

in a future project but is not the focus here (see Chapter 6). This thesis is primarily 

concerned with the integration of superimposed single-level spatial knowledge, and we 

assume that navigators can roughly estimate distance between floors.  
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In this thesis, multi-level survey knowledge is defined as a finite collection (a set) 

of places, routes, connectivity, and vertical alignment as well as other metric relations in 

terms of directions and distances, because “knowledge representations of space are 

probably not best conceived of as coherent, unchanging wholes, but rather as 

conglomerations of information drawn from different sources and modalities and pulled 

together for a particular purpose” (Mark, Freksa, Hirtle, Lloyd, & Tversky, 1999). 

Although the concepts of multi-level survey knowledge and multi-level cognitive maps 

are frequently used interchangeably in this thesis, it is worth noting that multi-level 

cognitive maps usually refer to the neural representation of multi-level built 

environments, whereas multi-level survey knowledge usually refers to knowledge 

representation such as positions, directions, and connectivity that is represented and 

retrieved for a specific spatial task. In the next section, we will introduce a series of 

cross-level spatial tasks used to evaluate users’ formed multi-level survey knowledge. 

2.4 Cross-level Spatial Tasks 

In this thesis, we designed three types of cross-level spatial tasks to evaluate users’ 

formed multi-level survey knowledge.  

Task 1: Between-floor pointing task. Users point from position p1 on one floor to 

position p2 on another floor. In the experiments described here, users were required to 
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point horizontally by imagining that the two positions were on the same plane. Note that 

if users can point horizontally to the target located on a different floor, they can also point 

directly to the target in the three-dimensional space, as they can roughly estimate distance 

between floors. 

Task 2: Between-floor wayfinding task. Users navigate from position p1 on one 

floor to position p2 on another floor using the shortest path.  

Task 3: Vertical alignment tasks. There are three types of vertical alignment tasks 

investigated by the experiments in this thesis: (1) Drilling task: users indicate which 

object or landmark (e.g., room) is directly above/below their current location 

(Experiments 4-6), (2) vertical navigation task: users navigate from position p1 to the 

corresponding position p1’ directly above/below p1 on another floor (Preliminary 

Experiment 2 and Experiment 7), and (3) paper-based drilling task: the experimenter 

provides a floor layout (printed on a paper) and then asks participants to draw circles on 

the layout to indicate the horizontal locations of the targets located on another floor 

(Preliminary Experiment 2 and Experiment 7). The three vertical alignment tasks were 

used in different experiments of this thesis and play an important role in accessing users’ 

formed between-floor alignment information. By definition, the drilling task is the most 

straightforward way to test vertical alignment information. Thus, for convenience, in this 
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thesis the vertical alignment task refers to the drilling task unless explicitly stated 

otherwise. 

We propose that multi-level survey knowledge is sufficient for supporting these 

cross-level spatial tasks. The term “sufficient” means that A (multi-level spatial 

knowledge), if satisfied, guarantees that B (cross-level spatial tasks) is obtained. In 

addition, we propose that multi-level survey knowledge is necessary for supporting these 

cross-level spatial tasks in a complex building. The term “necessary” means that A 

(multi-level spatial knowledge), must be satisfied in order for B (cross-level spatial tasks) 

to be obtained. Thus, we can use these cross-level spatial tasks to evaluate users’ formed 

multi-level survey knowledge.  

On the basis of the definition of multi-level survey knowledge, we argue that 

well-developed multi-level cognitive maps are not only useful for the obvious 

applications of affording efficient inter-level indoor route planning and wayfinding but 

that they could also be crucial for supporting many other scenarios. For example, in an 

emergency situation, firefighters need to determine the correct place to break through a 

ceiling to rescue people trapped in a building, or maintenance workers need to figure out 

the best route for drilling a hole to install conduit between floors. In each of these 

situations, accurately formed multi-level cognitive maps would be critically important for 

supporting spatial behaviors requiring integration of vertical spatial knowledge. 
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On the basis of the analysis of the logical relation between cross-level spatial 

tasks and multi-level survey knowledge, we conclude that, first, navigators need only a 

set of single-level survey knowledge representations and between-floor connectivity 

information to accurately and efficiently find targets located on different floors 

(between-floor wayfinding task). No between-floor alignment information or encoding of 

the z-axis is necessary in the between-floor wayfinding task. Second, in order to 

accurately point between positions located on different floors (point horizontally), 

navigators require only a set of single-level knowledge representations and between-floor 

alignment information. No between-floor connectivity information or encoding of the 

z-axis is needed in the between-floor pointing task. As discussed in Section 2.2.1, if 

navigators have learned the between-floor perspective shift, they need at least one pair of 

transition points (connectivity information) to calculate between-floor alignment 

information. Thus, under the prerequisite that users can accurately find positions located 

on different floors, the between-floor pointing task is the most important task for 

evaluating users’ formed multi-level survey knowledge in this thesis. If a factor assists 

users to acquire more accurate multi-level survey knowledge, we say that this factor 

promotes users’ development of multi-level cognitive maps. 
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2.5 Summary 

This chapter first provided the core concept of this thesis, multi-level cognitive 

maps, referring to a globally coherent mental representation of multi-level built 

environments. We then described the framework of integrating cross-level spatial 

knowledge to develop a multi-level cognitive map. The main points of this framework 

include:  

1) When a multi-level building has no between-floor visual access and no visual 

access between OI-spaces, navigators have to obtain rotational displacements by updating 

heading information during vertical transition (called path integration), in order to 

integrate cross-level spatial knowledge. 

2) When a multi-level building has visual access to a global landmark, navigators 

can use configurations of landmarks to determine their location and direction (called 

piloting) and use the information to integrate cross-level spatial knowledge. 

3) Secondary information sources such as AR visualizations and schematic maps 

that effectively convey the desired multi-level building information can facilitate the 

integration of cross-level spatial knowledge.  

We then formally defined multi-level survey knowledge, which is the final 

product of the process of cross-level spatial knowledge integration. Finally, we designed 

three types of cross-level spatial tasks to test the development of multi-level cognitive 
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maps. On the basis of these concepts and framework, we proposed three principal reasons 

for the challenge of developing multi-level cognitive maps including (1) complex 

between-floor structural and topological properties, (2) insufficient access to the requisite 

information such as global landmarks, and (3) the lack of cognitively motivated 

visualization techniques for indoor navigation. These assertions will be investigated 

throughout this dissertation in Experiments 1-7.   
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CHAPTER 3 

GENERAL METHODS 

In Chapter 3, we describe the general experimental methods that are in common 

across all experiments. Specific details are provided under each experiment.  

3.1 Participants 

All participants were recruited from the University of Maine student body. In total, 

146 participants (73 females and 73 males) took part in all studies for this dissertation. 

Table 3.1. Participant information. 

Experiment Females Males Mean (age)  SD (age) 

Preliminary Experiment 1 10 10 20.9 2.0 

Preliminary Experiment 2 6 6 25.9 6.7 

Experiment 1 8 8 20.1 2.0 

Experiment 2 8 8 21.6 1.8 

Experiment 3 8 8 20.2 1.2 

Experiment 4 8 8 20.1 2.0 

Experiment 5 8 8 19.8 2.4 

Experiment 6 8 8 21.4 4.4 

Experiment 7 9 9 25.8 7.4 
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 All participants self-reported as having normal or corrected to normal vision. All 

gave informed consent and received monetary compensation for their time. 

3.2 Materials and Apparatus 

The seven behavioral experiments in this thesis were carried out using Virtual 

Environments (VEs), as VEs and related technologies facilitate manipulation of building 

layout and information content as well as allow for tracking of navigators’ movement 

behavior. In VEs, it is relatively easy to parametrically vary properties of the environment 

and to investigate how manipulating these environmental properties affect humans’ 

mental representation (Loomis, Blascovich, & Beall, 1999), whereas in physical 

environments (PEs), controlled manipulations of floor layouts as well as landmarks 

would be very difficult, if not impossible, to similarly manipulate. Although there are 

several limitations of these VE-based systems, such as a smaller field of view, lower 

resolution, less realism than the PEs and often no auditory, tactile, proprioceptive and 

vestibular cues (Loomis, Blascovich, et al., 1999; Péruch & Gaunet, 1998), previous 

studies have shown that people can ultimately develop accurate spatial knowledge in 

large-scale VEs that is similar to knowledge acquisition gained from physical 

environments (O’Neill, 1992; Ruddle, Payne, & Jones, 1997; Stanton, Wilson, & 

Foreman, 1996; Tlauka & Wilson, 1996). Thus, VEs have been widely used by spatial 
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cognition researchers to study spatial learning and wayfinding (Richardson et al., 1999; 

Tlauka et al., 2007; Vidal & Berthoz, 2005; Wiener & Mallot, 2003). 

In this thesis, however, participants in all experiments had to navigate in a 

multi-level virtual building. It is necessary to establish a better understanding of the 

strengths and limitations of VEs on spatial learning and navigation in multi-level built 

environments. Richardson et al. (1999) required participants to learn the layout of a 

two-story building in one of three learning conditions, either from a map, from direct 

experience, or by traversing through a virtual rendition of the building. In the first testing 

phase, participants were required to make spatial judgments while imagining that they 

were within the environment (imagination condition)—imagining that they were directly 

facing each of the landmarks and then making direction estimates to other landmarks. In 

the second testing phase, the participants were led back into the real building for in-situ 

testing—the experimenter led participants to each landmark in the real building and asked 

for direction judgments to other landmarks. The results indicated that when pointing 

between landmarks on a single floor, VE learners and real-building learners showed 

similar performance with less than 5º difference in pointing error, suggesting that in a 

simple, single-floor environment navigators are able to “acquire as much knowledge from 

learning in a VE as from learning in a real environment” (Richardson et al., 1999). 

However, the VE learners had a greater between-floor pointing error than the 
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real-building learners, and subsequent analysis revealed that this difference was mostly 

driven by the imagination condition, as the pointing error difference between VE and 

real-building performance was significantly larger during imagination responses (22º) 

than during in-situ responses (10º). Richardson et al. (1999) offered the interpretation that 

the real-building learners could look around and use what they could see of the building’s 

layout to orient themselves, whereas the VE learners, especially in the imagination 

condition, did not receive self-orientation before testing (Richardson et al., 1999). To 

avoid this pitfall, in this thesis all cross-level spatial tasks (except the paper-based drilling 

task) were in-situ testing tasks, meaning that participants learned a virtual environment 

and were then tested in the virtual environment. In addition, all participants were 

encouraged to look around and use what they could see of the building’s layout to 

become oriented before testing. These considerations should largely eliminate the 

between-floor pointing error caused by the VEs. Richardson et al. (1999) also pointed out 

that the VE learners had difficulty in correctly updating their heading while traversing the 

eight 90º turns in the stairwell. To address this issue, in this thesis participants used 

elevators to navigate between floors and thus only needed to make at most one turn 

during vertical transition (except in Experiment 7 and Preliminary Experiment 2 where 

participants navigated between floors using staircases).  
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In the study by Richardson et al. (1999), the virtual environment was displayed on 

a 15" monitor, and movement in the environment was initiated with the four arrow keys, 

enabling the user to look left and right or to move forward and back. In this thesis, we 

used a 43" monitor, and participants used a Logitech Extreme 3D Pro Joystick to execute 

both rotational and translational movement by rotating and pushing the joystick. We 

argue that physically rotating the stick about its z axis is more analogous to physical 

rotation and may facilitate the feeling of “presence” better than the keyboard interface 

used in Richardson et al. (1999)’s research. In addition, previous studies have found clear 

evidence that using larger visual displays (screen size) greatly increased the reported 

level of presence (Ijsselsteijn, de Ridder, Freeman, Avons, & Bouwhuis, 2001; Polys, 

Kim, & Bowman, 2007). In sum, we believe that, by avoiding the potential pitfalls that 

have been suggested as complicating vertical travel in VEs, combined with the 

continually improving quality and realism of VE renderings, similar cross-level spatial 

behavioral performance is obtainable for real and virtual navigation in multi-level built 

environments.  

Additionally, we conducted two preliminary experiments to investigate the effects 

of the realism of the VE (sparsely rendered models vs. a photorealistic model), the 

immersion level of the VE (desktop VEs vs. head-mounted display VE), and the rotation 

method (physical rotation vs. imagined rotation) on users’ development of multi-level 
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cognitive maps. These factors are important for ensuring that the VE technology used in 

this thesis is the most valid measurement tool to address the research questions of 

interest.  

Before introducing the two preliminary experiments, in the next section we will 

first introduce the general experimental procedure used in all experiments (specific 

details are presented under each experiment). 

3.3 General Experimental Procedure 

A within-subject design was adopted in all experiments. Generally, there were 

seven phases in each experiment. 

Phase 1: Practice. Participants were familiarized with the apparatus and 

navigation behavior in the VE. All experimental tasks were explained and demonstrated 

before starting the experimental trials. 

Phase 2: Environmental learning. In Experiments 1-6 and Preliminary Experiment 

1, we used a method of environmental exposure and learning based on guidance from 

arrows on the floor. At the beginning of the experiment, participants were situated at one 

position either inside or outside of a computer-simulated multi-level building. A red 

arrow on the ground indicated north. Participants were asked to turn in place and to use 

what they could see of the environment (e.g., the building’s layout, the north arrow) to 
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orient themselves. Participants were then guided by blue arrows on the ground to learn 

the entire building. When they passed by a target, an audio signal was played that 

indicated its name, such as “conference room.” In Experiment 7 and Preliminary 

Experiment 2, we used a method of free-exploration for environmental exposure and 

learning. With this technique, participants freely learned the building based on a 

user-defined open search method instead of being guided by arrows on the ground, as 

was done in the other studies. This modification was done as in these two studies we 

aimed to simulate “real” world navigation in which free exploration is perhaps the most 

common approach of environmental familiarization. However, in Experiments 1-6 and 

Preliminary Experiment 1, we had to ensure that users had built single-level survey 

knowledge in the learning phase, so the arrow-guided environmental learning method 

ensured similar coverage and visual information access across floors and between all 

participants. It is worth noting that in the Richardson et al. (1999) study, participants used 

a guided environmental learning method, whereas Ruddle et al. (1997) allowed 

participants to freely explore a single-level virtual building with an unlimited amount of 

time. The exploration was usually completed in 45 to 60 minutes.  

Phase 3: Pointing criterion task. This task was designed to test whether 

participants had successfully learned all of the experimental targets in the building and 

had formed accurate single-level survey knowledge (2D cognitive maps). This task was 
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critically important for ensuring that all participants had a common baseline level of 

learning and had formed accurate 2D cognitive maps. For this test, participants were first 

randomly situated at one target (e.g., a room) and a red arrow appeared to indicate north. 

The experimenter then asked them to get oriented by using any information they could 

avail themselves of by looking around the surrounding environment. When participants 

were ready, the experimenter asked them to turn to face a straight line to the elevator on 

the current floor as quickly as possible without compromising accuracy. To perform this 

task, participants rotated in the VEs by twisting the joystick and when they felt they were 

facing toward the elevator, pulled the trigger to log their response. A red crosshair on the 

screen indicated participants’ facing direction. To meet the criterion, they needed to point 

to the elevator within a tolerance of 20° (15° in Preliminary Experiment 1). If they failed 

the first iteration, the Phase 2 learning and Phase 3 pointing criterion tests proceeded until 

they either successfully met criterion or made five incorrect attempts. About ten percent 

of the total participants failed this phase, partly due to experiencing motion sickness.  

Phase 4: Pointing task. Participants were first randomly situated at a target and 

were told its name, e.g., “conference room”. They were encouraged to orient themselves 

as they did in Phase 3. The experimenter then gave them a second target name and asked 

them to turn to face a straight line to that target (within-floor or between-floor). If the 

target room was on a different floor, they were instructed to ignore the vertical dimension 
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and to point as if the target was on the same plane as their current floor. They pulled the 

joystick’s trigger when they felt they were properly oriented so as to indicate a straight 

line to the requested target. Two dependent variables for the pointing task were analyzed: 

pointing latency and absolute pointing error. 

Phase 5: Wayfinding task. Participants were first randomly positioned at a target 

and were told its name. They were encouraged to orient themselves as they did in Phase 3. 

The experimenter then gave them a second target name and required participants to 

navigate to the target (within-floor or between-floor) using the shortest possible route. 

Upon reaching the perceived location of the target, they turned to face it and pulled the 

joystick’s trigger, at which point either the door opened (Experiments 1-6) or the target 

appeared (Experiment 7 and Preliminary Experiments 1-2) if they were correct. If 

incorrect, they were guided to the correct location before proceeding to the next trial. 

Two dependent variables were analyzed for this task: wayfinding accuracy (whether 

participants indicated the correct location and orientation of the target room) and 

wayfinding efficiency (shortest route length over traveled route length).  

Phase 6: Vertical alignment tests. In Experiments 4-6, we used a drilling task to test 

learning of vertical alignment information. For this test, after participants had entered a 

room at the end of the wayfinding task (Phase 5), the experimenter asked them which 

room or object was directly above/below their current location. There were four options: 
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(1) a target room, (2) an empty room, (3) fire extinguishers or water fountains, and (4) 

nothing. The dependent variable for the drilling task was drilling accuracy (whether 

participants successfully indicated which room or object was immediately above/below 

their current location). In Experiment 7 and Preliminary Experiment 2, we tested 

knowledge of vertical alignment using a vertical navigation task and a paper-based 

drilling task. In the vertical navigation task, participants were randomly placed at one of 

the target locations and given its name. Their task was to navigate to the corresponding 

point in the environment that was directly above or below the target at which they were 

currently located. For example, if participants were located at a target chair on the ground 

floor, their task was to navigate to the corresponding point on the second floor that was 

directly above the chair. If the target was located at a place where there was no 

corresponding point on the other floor, participants were asked to navigate to the location 

that was closest to the corresponding vertically-aligned point. The dependent variable for 

the vertical navigation task was vertical navigation accuracy (whether participants 

successfully navigated to the corresponding vertically-aligned point). In the paper-based 

drilling task, participants were first given a paper which depicted the building’s first floor 

layout. The experimenter then provided the names of the targets on the second floor. The 

task was to draw circles on the first floor layout to indicate the horizontal locations of the 

targets located on the second floor. Next, participants were given the second floor layout 
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and asked to indicate the first floor targets using the same method. The floor order was 

balanced. In Experiment 7, each building had four targets, so there were four paper-based 

drilling trials for each building. In Preliminary Experiment 2, each building had three 

targets corresponding to three paper-based drilling trials for each building. Here the 

dependent variable for this task was the paper-based drilling accuracy (whether 

participants successfully indicated the cross-level target’s location on the map).  

3.4 Preliminary Experiment 1  

The research question addressed by Preliminary Experiment 1 asks how the 

realism of the 3D visualization affects the development of multi-level cognitive maps. 

Empirical experiments addressing this issue support the view that users often have 

misplaced faith in realistic representations, termed “Naïve Realism” (Smallman & John, 

2005). For example, people using spatial interfaces for naval applications prefer spatially 

realistic 3D icons of ships and planes on their displays vs. functional, symbolic icons. 

However, these realistic features were shown to actually decrease identification 

performance (Smallman & John, 2005). Similarly, users predicted they would need 

high-fidelity photorealistic 3D displays to find routes across outdoor terrain, whereas 

experimental results demonstrated that they actually performed the task better with lower 

fidelity displays (Smallman, Cook, & Cowen, 2007). Several studies have clearly shown 
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that while photorealistic representations of maps appeal to users, they often have a 

negative impact on behavioral performance (Hegarty, Smallman, Stull, & Canham, 2009; 

Hegarty, 2008). As was illustrated in Klippel, Hirtle, & Davies (2010), people trying to 

use Google street view for wayfinding purposes converged on a similar experience—that 

simply providing photorealism is not enough for accurate spatial learning and wayfinding 

(Klippel et al., 2010). However, few studies have been conducted to evaluate the effect of 

environmental realism of 3D visualizations supporting real time indoor navigation. 

Although relatively impoverished renderings are assumed to be as effective in aiding 

people’s navigation through indoor spaces as photorealistic models, this assumption has 

not been extensively studied, although initial evidence has provided some empirical 

verification. For example, Kalia, Legge, & Giudice (2008) found that richly rendered 

(photorealistic) indoor virtual models were not as efficient for spatial learning as a sparse 

model. However, Kalia et al. (2008)’s research did not investigate different levels of 

visual granularity of 3D visualizations, nor was it aimed at evaluating the efficacy of 

using a 3D visualization to facilitate development of multi-level cognitive maps, as is the 

goal here.  

The primary goal of this experiment was to assess whether users’ pointing and 

wayfinding performance after spatial learning with the 3D visualization differed as a 

function of the visual granularity of the interface, findings which will help specify the 
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optimal information content to be used in future 3D displays for real-time indoor 

navigation systems. In this thesis, we aim to develop and evaluate perceptually-salient 

and user-friendly visualization interfaces to facilitate users’ development of multi-level 

cognitive maps (investigated in Experiments 5-7). Thus, the findings of Preliminary 

Experiment 1 are important to the subsequent work of this thesis, as they ensure that the 

realism level of the 3D visualization we used in this thesis is effective to address the 

questions of interest. 

In this study, we experimentally evaluated four simulation fidelity conditions 

which manipulate the level of visual granularity of the environment which is provided to 

the user by a simulated mobile device during learning of virtual buildings. Four levels of 

visualization granularity represent a natural progression of degraded surface detail for 

environmental rendering, while preserving building topology. Each model is depicted in 

Figure 3.1. The high fidelity model was rendered with photorealistic texture, natural light, 

and full color (The Mental Ray rendering plug-in was used to generate the model. The 

grayscale fidelity model used grey scale color to represent the building and there was no 

rendering of texture or photorealistic light. The wireframe model only rendered the lines 

at each edge. The sparse model was the simplest representation as it only contained the 

floor plan of each layout without walls and ceilings. 
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High fidelity model Grayscale model 

  

Wireframe model Sparse model 

Figure 3.1. Four visualization fidelity models. 

3.4.1 Methods 

Twenty participants (10 females and 10 males, mean age=20.9, SD=2.0) were 

recruited from the University of Maine student body.  

We used an SX111 HMD (NVIS, Inc.), incorporating inertial tracking, a 

panoramic 111° field of view, and a high resolution 1260 x 1080 stereo display, which 

provides a highly immersive VR experience. Two Nintendo Wii remotes were used in the 

experiment. One was used by the experimenter to control the sequence of experimental 

phases, and the other was used by the participant to translate through the VE. Turning in 

the VE was done through physical body rotation. The Vizard 3D rendering suite, by 



 

66 

 

   

WorldViz Inc., was used as the VE platform supporting users’ real-time navigation and 

recording their trajectory and test performance. 

Our environments were comprised of five two level buildings which were richly 

rendered in the VE. 3DS Max was used as the 3D modeling and rendering tool. Each 

level of the building was based on a 3 x 3 matrix of hallways, as illustrated in Figure 3.2. 

Each hallway was subdivided into two corridor segments. We deleted two segments from 

the twelve possible corridor segments in the generic environment to create our 

experimental layouts. This procedure ensured that all the layouts were well matched in 

terms of number of nodes, segments, and intersections. The two floors were connected by 

two elevators, which also served as salient landmarks for orientation in each of the 

experimental buildings. From a top-down perspective, one elevator was always located at 

the top center and the other was located at the southeast corner, as shown in Figure 3.2. 

 

 

Figure 3.2. Experimental building layouts. (E) represents the elevators. (L) represents the 

starting position during the learning period, which was located at the only 4-way 
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intersection in the building. (S) represents the starting position for the wayfinding task. 

(T) represents the target. 

The starting position for the wayfinding task was located near one of the two 

elevators to provide an orientation cue but was not visible from the starting learning point. 

There were two pictures on each floor which served as experimental targets. Pictures 

were based on eight high imagery words: bottle, chair, clock, dog, fish, kite, table and tie. 

All routes between pictures were matched across building for route length and number of 

turns. 

A within-subject design was adopted, with the twenty subjects running in all five 

visualization conditions (high fidelity model, grayscale model, wireframe model, sparse 

model and a fifth unaided control condition). Participants first learned a multi-level 

building (arrow-guided environmental learning) and then took part in a pointing task and 

the wayfinding task. The pointing task in this study was different from the pointing task 

introduced in the general experimental procedure in that participants were asked to point 

from the learning start point (indicated by “L” in Figure 3.2), instead of pointing from a 

random target. Thus, the absolute pointing error in Preliminary Experiment 2 was smaller 

than that in the other experiments. 
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3.4.2 Results 

A 5 (visual granularity: high fidelity model, grayscale model, wireframe model, 

sparse model and a fifth unaided control condition) × 2 (within-between floor: within vs. 

between) repeated-measures ANOVA was conducted for each of the four dependent 

measures of pointing latency, absolute pointing error, wayfinding accuracy and 

wayfinding efficiency. Significant main effects of within-between floor were observed for 

pointing latency, absolute pointing error, and wayfinding accuracy: pointing latency, F(1, 

39) = 10.79, p < .005, η2 = 0.217; absolute pointing error, F(1, 39) = 6.495, p < .05, η2 = 

0.143; wayfinding accuracy, F(1, 39) = 9.457, p < .005, η2 = 0.195. The results showed 

that participants took longer times to point, exhibited greater pointing errors, and had 

lower wayfinding accuracy when pointing and wayfinding to targets located on different 

floors than when they were on the same floor.  

Significant main effects of visual granularity were observed for both wayfinding 

accuracy and wayfinding efficiency: wayfinding accuracy, F(4, 156) = 2.678, p < .05, η2 

= 0.064; wayfinding efficiency, F(4, 156) = 3.192, p < .05, η2 = 0.076. Subsequent Dunn–

Sidak pairwise comparisons showed that navigation in the sparse model was more 

accurate than in the high fidelity model and the grayscale model, and navigation in the 

sparse model was more efficient than in the grayscale model (all ps < 0.01), suggesting 

that use of a sparsely rendered 3D visualization is more efficient than both of the high 



 

69 

 

   

fidelity and grayscale models for assisting between-floor wayfinding performance. In 

addition, no reliable differences were found between pointing in the high fidelity model 

and in the sparsely rendered models, providing clear evidence that adding realism to the 

3D visualization during learning is neither necessary nor advantageous for extraction of 

direction relations between targets. 

3.4.3 Discussion 

The primary goal of this experiment was to investigate whether a sparsely 

rendered model (e.g., the wireframe model and the sparse model) is as effective as a 

highly rendered model (e.g., the high fidelity model) for supporting the development of 

multi-level cognitive maps. The results showed that using the sparse model to assist 

learning led to the highest wayfinding performance and no reliable differences were 

found between pointing with the assistance of different visual granularity levels. These 

results provide compelling evidence that there is no reliable advantage of 3D 

visualizations rendered at a high level of visual granularity on learning and navigation of 

buildings and that in many cases, the best performance is obtained using a sparsely 

rendered spatial model. These findings are consistent with, and extend, previous research 

regarding the evaluation of the realism of 2D maps (Hegarty et al., 2009; Hegarty, 2008; 

Smallman et al., 2007; Smallman & John, 2005). One explanation is that participants 
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need to extract picture and layout information from high fidelity 3D visualizations to 

encode the relative positions of these pictures as well as their positions in the building, 

whereas this information is more directly specified from the sparse model. This synthesis 

and extraction process may yield additional cognitive effort during learning which 

resulted in the increased navigation error and decreased efficiency for information-rich 

displays compared to the displays rendered with lower visual granularity. As illustrated 

by Smallman & John (2005), good display design is more than slavishly adhering to 

realism. Our research extends the theory of naïve geography to use of 3D visualization in 

real time indoor navigation and provides new evidence for the basic principle of these 

displays that graphics should not provide more information than is needed by the user 

(Smallman & John, 2005). The findings of Preliminary Experiment 1 set the stage of the 

model rendering requirements needed in Experiments 5-7 and ensure that a photorealistic 

model is not necessary and might be less effective for assisting the development of 

multi-level cognitive maps. 

3.5 Preliminary Experiment 2 

The first research question addressed by Preliminary Experiment 2 asks how the 

immersion level of the virtual environment affects the development of multi-level 

cognitive maps. Immersion “describes the extent to which computer displays are capable 
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of delivering an inclusive, extensive, surrounding, and vivid illusion of reality to the 

senses of human participants” (Slater & Wilbur, 1997). This research question is 

addressed by comparing highly immersive VEs where the simulated information is 

presented through a head-mounted display (HMD) and changes with head movement vs. 

low immersion desktop VEs, where the simulated information is presented on a computer 

monitor. Compared to desktop VEs, immersive VEs generally have stereoscopic vision 

with a wider field of view and tracking of more degrees of freedom. Navigators can 

immerse themselves in the VEs to obtain realistic views and a sense of presence which is 

not possible using desktop VEs (Loomis, Blascovich, et al., 1999). Therefore, there is a 

common assumption that they are more effective than desktop VEs for certain spatial 

behaviors (e.g., pointing and wayfinding). However, immersive VE equipment, e.g., the 

HMD and head-tracking sensors, are far more expensive and complex to set up than 

desktop VE systems (Wright & Madey, 2008) and are therefore rarely used outside of the 

research lab setting. In addition, previous literature has shown that the HMD-based 

systems often elicited higher levels of simulator sickness and evoked larger negative 

emotions compared to desktop VEs (Kim, Rosenthal, Zielinski, & Brady, 2012). By 

contrast, desktop VEs have become less expensive and the graphics cards have become 

more powerful, so viewing and interacting with high quality desktop VE environments is 

more easily managed than in the past (Lau et al., 2003). Hence, if desktop VEs are shown 
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to lead to similar behavioral performance as is obtained from use of an HMD in some 

circumstances, use of this simpler technology may open the door for their implementation 

in a much broader application domain by many more people, instead of being limited to a 

few research labs as is the case with immersive VE systems. Thus, it is necessary to 

assess whether there is sufficient benefit to justify using the more expensive immersive 

VE systems in spatial cognition research. Some evidence from previous literature 

supports the use of desktop VE systems. For instance, Ruddle, Payne, & Jones (1999) 

asked participants to walk through a virtual building using an HMD and the same 

environment using a desktop VE. Results of the study showed that there was no 

significant difference in the absolute percentage error of participants’ straight-line 

distance estimates; also, there were no reliable differences in the direction-estimates 

between the two types of displays (Ruddle et al., 1999). However, the simulated 

environments used in Ruddle et al. (1999)’s study were two single-level virtual buildings. 

It is unknown from previous literature how the immersion level of the virtual 

environment affects the development of multi-level cognitive maps. This issue is 

addressed in the current experiment.  

The second research question addressed in this experiment asks whether the 

rotation method used in the desktop VE (imagined rotation vs. physical rotation) affects 

users’ development of multi-level cognitive maps. Navigation is a common interactive 
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task performed with spatial cognition studies in VEs. However, the tracked space in the 

physical world is usually much smaller than the VE being navigated. In immersive VEs, 

previous techniques either replicate the motions of walking (e.g., treadmills, walking in 

place) or employ a joystick or keyboard to effect translation, while direction of 

movement is usually specified by either head orientation or a handheld pointer. In 

desktop VE systems, the joystick or keyboard is often used for both translation and 

orientation. Riecke et al. (2010) conducted a study in which participants were asked to 

search through a computer generated environment for targets in a joystick condition, free 

walking condition (physical translational and rotational movement) and rotation 

condition (only rotational movement). In the joystick condition, both horizontal 

translations and yaw/pitch rotations in the VE were controlled by the joystick. 

Participants in the walking condition navigated through the virtual scene by physically 

walking (translating and turning). Participants in the rotation condition used a joystick to 

translate through the virtual scene, but rotations were still controlled by corresponding 

physical motions (turning in place). The results showed that physical rotations alone 

without actual walking are sufficient for supporting users in finding targets in a 

single-level VE using an HMD. In addition, Giudice & Tietz (2008) conducted a study to 

investigate the effect of physical body rotation using virtual verbal displays (without 

HMDs) for environmental learning and wayfinding based on spatial language vs. visual 
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access. Their results also showed that employing physical rotation during learning 

significantly improved spatial knowledge acquisition and cognitive map development 

(Giudice & Tietz, 2008). Although previous literature has shown that translation with 

HMDs or virtual verbal displays based on a joystick as the means of movement through a 

single-level virtual space is effective, the effectiveness of physical rotation in a 

multi-level desktop VE on users’ development of multi-level cognitive maps is still 

unknown. If the results show that imagined rotation in a desktop VE is effective in 

supporting multi-level cognitive map development, the setup of desktop VEs will be 

further simplified, as experimenters do not need to utilize an inertial tracking system to 

update users’ heading in the physical rotation conditions. 

In the current experiment, three within-subject conditions (physical rotation HMD, 

physical rotation desktop and imagined rotation desktop) were used. In the physical 

rotation HMD condition, participants wear an HMD to apprehend the space as they 

navigate the VEs. A joystick is used to perform forward translation and rotations are 

made by spinning in place on a chair. An inertial tracker is used to update users’ change 

in heading with rotation. In both of the two desktop conditions, participants used a laptop 

to see the virtual building. Similar to the physical rotation HMD condition, navigation in 

the physical rotation desktop VE was done using a joystick to perform translational 

movement and physical turning via the rotating chair was used to execute rotations. 
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However, in the imagined rotation desktop condition, rotations were executed by twisting 

the stick about its z axis, which is the only difference between the two desktop 

conditions. 

3.5.1 Methods 

Twelve participants (6 females and 6 males, M =25.9, SD=6.7) were recruited 

from the University of Maine student body.  

In the immersive HMD VE condition, we used a zSight integrated SXGA HMD 

(Sensics, Inc.), incorporating inertial tracking, 70° field of view, and a high resolution 

full-color SXGA 1280×1024 pixels per eye. A Lenovo W510 Thinkpad 15.6-inch 

workstation notebook with an Intel Core i7 processor and NVIDIA Quadro FX 880M 

graphics was used in the two desktop VE conditions. A Logitech Extreme 3D Pro 

Joystick was used in all three conditions to perform forward-back translations. In the 

imagined rotation desktop VE condition, participants use the joystick to make both 

translational and rotational movements. In all conditions, participants sat on a rotatable 

chair with an attached platform to hold the laptop used in the two desktop conditions. 

Our environments were comprised of three two-level buildings which were 

designed using Revit Architecture 2013 (AutoDesk, Inc.), as shown in Figure 3.3. The 
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Unity 4.0 VR engine (Unity Technologies) was used as the VE platform supporting users’ 

real-time navigation and recording their trajectory and test performance. 

 

Figure 3.3. Multi-level virtual buildings. 

All the virtual buildings used in the experiment were matched for layout 

complexity and topology, as shown in Figure 3.4. The start learning point is located at the 

southeast corner of the first floor. There was a red arrow indicating the start point and the 

north direction. The two floors were connected by one staircase, located at the north of 

the building. The staircase and the start point arrow could serve as landmarks for 

orientation in each of the experimental buildings. There were two pictures on the second 

floor and one picture on the first floor which served as experimental targets. Pictures 

were based on three high imagery words: chair, fish and kite. All targets were initially 

hidden from view but when participants passed the target, an audio signal was triggered 

that gave its name. The target also visually appeared for ten seconds and then faded out. 



 

77 

 

   

 

Figure 3.4. Experimental layouts with target locations denoted. The solid line represents 

the first floor layout, while the dashed line represents the second floor layout. 

A within-subject design was adopted, with the twelve participants running in all 

three conditions (physical rotation HMD, physical rotation desktop and imagined rotation 

desktop). Participants first freely learned a multi-level building and then took part in four 

spatial tasks: pointing, wayfinding, vertical navigation task, and paper-based drilling 

tasks (as described in the general experimental procedure). 

3.5.2 Results 

A 3 (VE conditions: physical rotation HMD, physical rotation desktop and 

imagined rotation HMD) × 2 (within-between floor: within vs. between) 

repeated-measures ANOVA was conducted for each of the four dependent measures of 

pointing latency, absolute pointing error, wayfinding accuracy and wayfinding efficiency. 

There was no significant effect of VE conditions on any of these measures (all ps > .05), 

suggesting that more immersive VE systems (e.g., HMD) do not necessarily lead to better 

performance in the two cross-level spatial tasks. As with the previous experiment, 
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significant main effects of within-between floor were observed for pointing latency, 

absolute pointing error, and wayfinding accuracy, with within-floor pointing trials being 

faster and more accurate than between-floor pointing trials: pointing latency, F(2, 22) = 

8.209, p < .05; absolute pointing error, F(2, 22) = 36.496, p < .0001. Within-floor 

wayfinding was also more accurate than between-floor wayfinding: wayfinding accuracy, 

F(2, 22) = 5.077, p < .05. These findings are consistent with the findings of Preliminary 

Experiment 1. The findings of the two preliminary experiments motivated the research of 

this thesis—why is integrating between-level building information so challenging for 

human spatial cognition? This fundamental and core research question is investigated 

throughout the remainder of the thesis.  

A one-way repeated measures ANOVA was run for each of the two dependent 

measures of vertical navigation accuracy and paper-based drilling accuracy with the three 

VE conditions as a within-subject factor. The main effect of VE conditions on 

paper-based drilling accuracy was significant, F(2, 70) = 3.237, p < .05. Subsequent 

Dunn–Sidak pairwise comparisons showed that average paper-based drilling accuracy in 

the desktop VE was significantly higher than that in the HMD VE, t(35)=- 2.256, p < .05, 

and that the average drilling accuracy in the physical rotation desktop condition was 

significantly higher than in the imagined rotation desktop condition, t(35)=-2.092, p < .05. 
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No effect of VE conditions on vertical navigation accuracy was observed, F(2, 70) = .836, 

p > .05. 

3.5.3 Discussion 

The primary goal of this experiment was to investigate whether the desktop VE is 

as effective as more immersive HMD-based VEs for supporting the development of 

multi-level cognitive maps. The results showed that there were no reliable differences 

between the two VE immersion levels (HMD vs. desktop) in the pointing, navigation, 

vertical navigation and paper-based drilling tasks. There may still be advantages to 

immersive VEs, but the results of this experiment indicate that the benefit gained from 

more immersive VEs (e.g., HMD) may not be as pervasive as is suggested in the 

literature, at least for performing these cross-level spatial tasks. The most likely reason 

for the lack of an effect for HMD-based immersive VE is that the HMD VE cannot 

provide a vivid illusion of the vertical travel during this task. Thus, a higher immersion 

VE did not provide a benefit over the desktop VE. In addition, participants in the 

immersive condition needed to wear a heavy HMD for about 15 minutes (including the 

learning and testing phases) which sometimes has been shown to cause discomfort for 

participants (Kim et al., 2012). In corroboration, several participants in this experiment 

self-reported dizziness caused by wearing the HMD. As a result, the advantages of higher 
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immersion are unfortunately offset by participants’ dizziness and potential distraction 

from the VE equipment. 

With regard to the rotation method (physical vs. imagined) in desktop VEs, the 

results showed that there was no significant difference between physical rotation and 

imagined rotation in the pointing, navigation and vertical navigation tasks. The only task 

where participants showed a reliable benefit from physical rotation was the paper-based 

drilling task. However, the pointing error for physical rotation was much higher than the 

other two conditions, so making any definitive claims for an advantage of inclusion of 

physical rotation is not possible from these data. In this experiment, users sat on a 

rotatable chair and thereby the rotation was less intuitive and natural than with the 

rotation in place while standing as was used in the virtual study with verbal displays 

where it was shown to be an advantage (Giudice & Tietz, 2008) and the virtual navigation 

study (Riecke et al., 2010). Therefore, the advantages of physical rotation, e.g., 

proprioceptive and vestibular feedback, may have been less in the current design. In 

addition, during vertical transition in the stairwell, participants had to turn smoothly when 

they went forward and upward. Several participants in the physical rotation conditions 

had difficulty in navigating smoothly along the staircases because they could not make 

the physical rotation and imagined joystick translation simultaneously. As a result, these 

participants usually made a turn too early or too late and thereby got stuck by the stair 
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railing. However, in the imagined rotation desktop condition, users only needed to use 

one device to execute both rotational and translational movement behaviors by rotating 

and pushing the joystick. The vertical travel, providing important translation and rotation 

information, is unfortunately the hardest part for the virtual navigation in the physical 

rotation desktop VE, so the performance on the test measures in the imagined rotation 

desktop condition (with joystick) was no worse and perhaps even better than the physical 

rotation desktop VE condition.  

In sum, some situations may benefit from higher immersion or physical 

movement but at least for the cross-level spatial tasks used in the current multi-level 

environments, the current data suggests that employing desktop VEs with a joystick to 

perform both translational and rotational movement is sufficient for studying human 

navigation in a virtual building and multi-level cognitive map development. Therefore, in 

the seven primary experiments described in this thesis, participants used desktop VEs 

(with a Logitech Extreme 3D Pro Joystick) to translate and rotate in the virtual 

environments. 

3.6 Summary 

This chapter first described the general methods pertaining to the majority of the 

experiments elaborated in this thesis. We then described two preliminary experiments that 
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were conducted to examine basic VE characteristics that set the stage for subsequent 

experiments described in later chapters. This included evaluating the effects of the 

realism of the VE, the immersion level of the VE, and the rotation method used in the VE 

on users’ development of multi-level cognitive maps. In Preliminary Experiment 1, we 

found that 3D visualizations rendered at a high level of visual granularity are not 

necessary for effective learning and navigation of multi-level buildings. Preliminary 

Experiment 2 indicated that using a desktop VE and employing a joystick for both 

translation and rotation is sufficient for studying human navigation in a virtual multi-level 

building. These studies refining the experimental tool (VEs) for supporting navigation in 

multi-level built environments are important to the subsequent work of this thesis, as they 

help determine the technical requirements for all seven behavioral experiments and 

ensure that the tool we chose (desktop virtual reality) is effective to address the questions 

of interest. Importantly, the findings of the two preliminary experiments (the 

between-floor effect) were the impetus to explore why integrating between-level building 

information is so challenging for human spatial cognition. This fundamental research 

question is investigated throughout the following experiments.  
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CHAPTER 4 

EVALUATION OF ENVIRONMENTAL FACTORS ON THE DEVELOPMENT 

OF MULTI-LEVEL COGNITIVE MAPS  

4.1 Introduction 

In Chapter 4, we describe four experiments (Experiments 1-4) using VEs to 

evaluate the impact of environmental factors including (1) multi-level structural and 

topological properties of built environments, and (2) global indoor and outdoor 

landmarks in the environment, on the development of multi-level cognitive maps. In 

Section 2.2.1, we argued that between-floor structural and topological properties of 

buildings impair users’ development of multi-level cognitive maps (Hypothesis 1). To 

evaluate this hypothesis, Experiments 1-3 investigated five between-floor structural and 

topological properties of buildings: (1) the z-axis offset, (2) the 90° between-floor 

heading shift, (3) the between-floor overlap, (4) the between-floor misalignment, and (5) 

the portal-floor heading shift. Each of these properties will be described below and are 

illustrated in Figure 4.1 and Figure 4.2. 

(1) The z-axis offset. A multi-level building contains multiple floors and each floor 

has a z-axis value (e.g., floor height), meaning that different floors have a z-axis offset 

(i.e., vertical distance between floors), as shown in Figure 4.1(b). To study the effect of 
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the z-axis offset, we designed a single-floor building with two regions, pictured in Figure 

4.1(a), serving as the control condition. As discussed in Section 2.2, a region represents a 

perceived and encoded representation in spatial memory in which locations are grouped 

within a common spatial reference frame (Wiener & Mallot, 2003; Wiener et al., 2005). 

Note that, in this thesis, the two regions of the single-floor building (the control condition) 

were connected by an “elevator”, which supported users’ horizontal transition between 

the two regions on the same plane instead of going up/down between floors. Importantly, 

the two regions of the single-level building (no z-axis offset, control condition) and the 

two floors of the multi-level building (including a z-axis offset) were matched for layout 

complexity. Therefore, by comparing users’ performance on cross-level spatial behaviors 

(see description in Section 2.4) between the two types of buildings, we can examine the 

effect of the z-axis offset on users’ development of multi-level cognitive maps. 

 

Figure 4.1. The z-axis offset, between-floor overlap, and misalignment. The bold solid 

lines represent the hallways. 
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(2) The between-floor overlap. Two floors of a building can be displaced so as to 

be non-overlapped between the floors, as in Figure 4.1(b), or be overlapped between the 

floors (Figure 4.1(c)). This can be thought of as a continuum from no overlap (0%) to 

completely overlapped (100%), if two floors/regions are matched at their boundaries, as 

shown in Figure 4.1 (see discussion in Egenhofer, 1993). If two floors of a building are 

overlapped, there must be a set of positions within the two floors co-located at the same 

x-y coordinates. For simplicity in this thesis, however, between-floor partially- and 

fully-overlapped floors are both termed as encompassing the between-floor overlap factor. 

The examination of different types of between-floor overlap on multi-level cognitive map 

development is beyond the scope of this thesis but an important research topic for future 

studies.  

(3) The between-floor misalignment. If two floors of a building have an angular 

offset (i.e., perspective shift γ, see Section 2.2.1), they can be said to have a misalignment 

between the floors, as shown in Figure 4.1(d), known as the between-floor misalignment 

factor.   

(4) The between-floor heading shift. As described in Section 2.2.1, navigators use 

vertical connectors (e.g., elevators, staircases, escalators) to navigate between (up/down) 

floors. In this process they pass through a between-floor portal such as an 

elevator/stairway door to enter or exit a floor. The between-floor heading shift refers to 
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the heading shift (if present) imposed when entering and exiting between-floor portals 

(see Section 2.2.1). For example, as shown in Figure 4.2(b), the elevator has separate 

entrance and exit doors that are offset by 90°, so navigators will experience a 90° 

between-floor heading shift after vertical travel.  

(5) The portal-floor heading shift. If the orientation of the portal has an angular 

offset with respect to the floor’s reference direction, navigators will experience a heading 

shift both before entering and after exiting the portal. This heading shift is termed the 

portal-floor heading shift (see Section 2.2.1), referring to the angular offset between the 

reference direction of a floor and the orientation of a portal. For example, as shown in 

Figure 4.2(c), navigators will experience not only a 90° between-floor heading shift after 

vertical travel but also a 45° portal-floor heading shift before entering and after exiting 

the elevator.  

 

Figure 4.2. Between-floor heading shift and portal-floor angular offset. The blue arrows 

indicate the orientation of the elevator’s entrance and exit doors. 
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We studied these five between-floor structural and topological properties in 

Experiments 1-3. In addition, Experiment 4 examined the effects of global landmarks 

(both indoor and outdoor) on users’ development of multi-level cognitive maps in order 

to evaluate the two hypotheses proposed in Section 2.4: (1) visual access to a global 

landmark from within a building promotes users’ development of multi-level cognitive 

maps (Hypothesis 2) and (2) if a global landmark is visible from both indoor and outdoor 

spaces, it will facilitate both cross-level spatial knowledge integration and the integration 

of OI-spaces (Hypothesis 3). 

4.2 Experiment 1 (z-axis offset and 90° heading shift) 

4.2.1 Introduction 

The first research question addressed by Experiment 1 asks whether the z-axis 

offset can solely be attributed as impairing the development of multi-level cognitive maps. 

In the two preliminary experiments, we found that participants took longer to point, 

exhibited greater pointing errors, and had lower wayfinding accuracy when pointing and 

wayfinding to targets located on different floors than when they were on the same floor. 

However, in these two studies, the between-floor routes were more complex than the 

within-floor routes with more turns and longer overall route length. In order to accurately 

point between locations without direct visual access, navigators have to integrate local 
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spatial knowledge based on turns taken, distances, and angles (Golledge, 1999). However, 

errors can accumulate during this process—the longer the travelled route, the larger the 

path integration error (Etienne & Jeffery, 2004; Klatzky, Loomis, & Golledge, 1997; 

Loomis et al., 1993a; Wan, Wang, & Crowell, 2013). In addition, the multi-level 

buildings used in the two preliminary experiments consisted of two overlapped floors. 

Thus, it is unclear whether the effects of the between-floor pointing and navigation 

performance found in these two studies were caused by the longer travelled routes, the 

z-axis offset, or the between-floor overlap (or a combination thereof that cannot be 

disentangled). Due to the nature of the experimental design, the majority of previous 

studies on indoor wayfinding in the real world also suffer from difficulty determining 

which factor (or factors) cause the between-floor effect of pointing and wayfinding. It is 

not surprising that previous literature investigating the effects of between-floor pointing 

performance is somewhat contradictory. For instance, Montello and Pick (1993) 

conducted a study with results suggesting that the z-axis offset factor did not contribute to 

the difficulty of between-floor pointing. In their study, participants first learned two 

distinct routes in and around a university building that never crossed. One route used in 

their study contained two sections with a z-axis offset, meaning one section was inside 

the building whereas the other was outside. The outside section of the route was one floor 

above the inside section. After walking the route and learning object locations (not visible 
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from each other), participants were required to indicate straight-line directions to 

landmarks in the two sections (located on two levels) to test the formed cognitive map. 

The results showed that between-level pointing accuracy was comparable, suggesting that 

the z-axis offset did not affect users’ pointing performance. However, the within- and 

between-floor routes used in Montello and Pick (1993)’s study had a different path 

structure in terms of the number of turns and overall route length. Thus, the relative 

pointing performance was difficult to interpret, and it is still unknown whether the z-axis 

offset alone impairs the development of multi-level cognitive maps.  

To address this issue, in this thesis we designed a set of “ideal” environments 

using VEs to disentangle factors discussed above that may lead to the between-floor 

effect. We aimed to determine exactly which topological or structural factor of 

multi-level built environments leads to the difficulty in between-floor pointing and 

wayfinding known from the literature and from our preliminary experiments described in 

Chapter 3. For instance, in Experiment 1, we designed four non-overlapped buildings 

using VEs, depicted in Figure 4.3. Buildings 3 and 4 had two non-overlapped floors (but 

with a z-axis offset), whereas buildings 1 and 2 had only one floor with two 

non-overlapped regions (no z-axis offset). Importantly, the overall route length and the 

number of turns for within- and between-floor routes were matched for each building. In 

this case, we successfully excluded the two structural factors: the longer-travelled routes 
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and the between-floor overlap. Therefore, if an effect of between-floor pointing or 

wayfinding performance was observed in Experiment 1, we can conclude that the z-axis 

offset solely impairs the development of multi-level cognitive maps (see discussion of 

cross-level spatial tasks in Section 2.4). 

 

Figure 4.3. Floor layouts of Experiment 1. 

The second research question addressed by Experiment 1 asks whether the 90° 

heading shift during between-floor or between-region transitions impairs the 

development of multi-level cognitive maps. In Section 2.2.1, we proposed that the 

between-floor heading shift during vertical transition might cause the difficulty of 

integrating multi-level spatial knowledge. This assertion is investigated in the current 

study. Previous literature has found that confusing staircases are one of the main reasons 

for becoming lost inside buildings (Hölscher et al., 2006). However, two factors are 

involved in the vertical transition via a staircase: the between-floor heading shift (as 

discussed in Section 2.2.1) and additional movements and turns in the stairwell. Thus, it 
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is unclear whether the difficulty of using staircases for vertical transition found in the 

research by Hölscher et al. (2006) was caused by the between-floor heading shift or by 

the additional movements and turns in the stairwell. To address this issue in Experiment 1, 

navigators only used elevators for vertical transitions, as this eliminates any potential 

confound from the additional rotations imposed by using stairs. In addition, we designed 

two types of elevators, one with and one without the between-floor heading shift, as 

shown in Figure 4.3. Buildings 1 and 3 had an elevator with a 0° heading shift, whereas 

buildings 2 and 4 had an elevator with a 90° heading shift. Given that there are no 

additional movements and turns when using the elevator for vertical transitions, if an 

effect of between-floor pointing or wayfinding performance is observed, we can conclude 

that the 90° between-floor heading shift impairs the development of multi-level cognitive 

maps.  

In research by Street (2012) on indoor navigation, two groups of participants 

learned a multi-level campus building. One group used an elevator to navigate between 

floors, and the other group used a staircase for vertical transition. After learning the 

building, both groups were asked to point to within-floor and between-floor targets (with 

the same route length). The results showed that the overall pointing error for the group 

using the elevator was significantly less than of the group using the staircase. However, 

for the elevator group, navigators still had larger between-floor pointing error than in the 
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within-floor pointing trials, suggesting that any additional movements and turns imposed 

by use of the stairs for between-floor transitions cannot be the sole source of the difficulty 

observed in between-floor pointing performance. Street (2012) did not propose what 

factor might be causing this between-floor effect. However, we postulate that it was 

likely caused by the combination of the z-axis offset and the between-floor overlap 

factors as described in the introduction. This assertion is further investigated in 

Experiment 2. 

4.2.2 Methods 

Sixteen participants (eight females and eight males, mean age = 20.1, SD = 2.0) 

were recruited from the University of Maine student body. 

The experimental environments were displayed on a Samsung 43" Class Plasma 

HDTV monitor running at 60 Hz at a resolution of 1024 × 768, as shown in Figure 4.4. 

We ran the desktop VEs using a Lenovo W510 Thinkpad 15.6-inch workstation notebook 

(Intel Core i7 processor and NVIDIA Quadro FX 880M graphics). We used the Unity 4.0 

VR engine (Unity Technologies) as the VE platform supporting users’ real-time 

navigation and recording their trajectory and test performance. Participants used a 

Logitech Extreme 3D Pro Joystick to make both translational and rotational movements 

(see discussion in Preliminary Experiment 2). 
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Figure 4.4. Virtual Environments of Experiments 1-3. 

Our environments comprised four buildings designed using Revit Architecture 

2013 (AutoDesk, Inc.). The four buildings were matched for layout complexity but had 

distinctive between-floor topological and structural properties (i.e., the z-axis offset and 

between-floor heading shift), as pictured in Figure 4.3. Each building contained an 

elevator and four rooms: a bathroom, a classroom, a conference room, and an office, 

serving as targets. The four rooms had the same size (5m×5m) but distinctive interior 

objects and floor textures. The locations of the four rooms were balanced among the four 

buildings. As described above, the overall route length and the number of turns for 

within- and between-floor routes were matched for each building.  

All participants of Experiments 1-3 followed the same procedure across 

experiments: they first learned a multi-level building and then took part in two cross-level 

spatial tasks: between-floor pointing and wayfinding (see Sections 2.4 and 3.3). The 

vertical alignment task was not used in Experiment 1, as all buildings were 

non-overlapped. 
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4.2.3 Results 

A 2 (z-axis: no offset vs. offset) × 2 (between-floor heading shift: 0° vs. 90°) 

repeated-measures ANOVA was conducted for each of the four dependent measures 

(absolute pointing error, pointing latency, wayfinding accuracy, and wayfinding 

efficiency). There was no significant main effect of the z-axis offset for any measure: 

absolute pointing error, F(1, 63) = 0.081, p > .05, 2 = .001; pointing latency, F(1, 63) 

= .336, p > .05, 2 = .005; wayfinding accuracy, F(1, 31) = 0.177, p > .05, 2 = .006; or 

wayfinding efficiency, F(1, 31) = 0.140, p > .05, 2 = .004.  

 

Figure 4.5. Mean absolute pointing error for Experiment 1. 

Note that in this study the between-floor and within-floor routes had exactly the 

same number of turns and equivalent route length. If the z-axis factor led to the difficulty 

of cross-level spatial knowledge integration, participants must exhibit greater errors when 

pointing and wayfinding to targets located on different floors than when they were on the 
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same floor. However, no effect of the z-axis offset was observed for any measure. Based 

on the observed effect sizes, we used G*power to determine how many subjects would 

have been necessary for statistical significance at power level of .95. We found that 

statistical significance was unlikely unless sample size was dramatically increased (n > 

100,000). Thus, we are confident in the null results. In other words, the z-axis offset 

alone cannot be attributable to impairing users’ development of multi-level cognitive 

maps.  

 

Figure 4.6. Mean absolute wayfinding accuracy for Experiment 1. 

There was no significant main effect of the 90° between-floor heading shift for 

any measure: absolute pointing error, F(1, 63) = .574, p > .05, 2 = .009, pointing latency, 

F(1, 63) = .164, p > .05, 2 = .003, wayfinding accuracy, F(1, 31) = 0.0001, p > .05, 2 

= .0001, wayfinding efficiency, F(1, 31) = 0.001, p > .05, 2 = .0001. The results suggest 

that the 90° between-floor heading shift also did not impair users’ development of 
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multi-level cognitive maps, at least not in any of the Experiment 1 buildings. Our lack of 

an effect may be due to our building design; that is, all of the Experiment 1 buildings 

were non-overlapped but shared the same reference direction, so participants might have 

used this as a cue. This issue will be further studied in Experiment 3, in which we 

investigated whether a confusing heading shift (the combined factor of between-floor 

heading shift and portal-floor heading shift) would impair users’ development of 

multi-level cognitive maps in overlapped and aligned buildings. 

Table 4.1. Mean absolute pointing error, pointing latency, wayfinding accuracy, and 

wayfinding efficiency in Experiment 1. 

Dependent Variables 

(Measures)  

Independent Variable II 

Independent Variable I 

no z-axis offset z-axis offset 

Absolute pointing error 0° between-floor heading shift 25.39 (2.88) 21.58 (2.89) 

 90° between-floor heading shift 20.29 (3.05) 22.48 (2.96) 

Pointing latency 0° between-floor heading shift 12.48 (0.83) 11.85 (0.90) 

 90° between-floor heading shift 12.52 (0.83) 12.32 (1.13) 

Wayfinding accuracy 0° between-floor heading shift 71.9% (8.1%) 81.3% (7.0%) 

 90° between-floor heading shift 78.1% (7.4%) 75.0% (7.8%) 

Wayfinding efficiency 0° between-floor heading shift 70.6% (8.0%) 79.9% (6.9%) 

 90° between-floor heading shift 77.4% (7.4%) 73.5% (7.7%) 
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4.2.4 Discussion 

The primary goal of Experiment 1 was to investigate whether either a z-axis offset 

or a 90° between-floor heading shift impairs the development of multi-level cognitive 

maps. Interestingly, no effects of the two factors were observed for any measure.  

In Experiment 1, navigators learned each floor/region separately whether or not 

there was a z-axis offset, meaning that the z-axis offset factor only affects the encoding of 

the vertical dimension not the other three components of multi-level cognitive maps 

(multiple single-level 2D cognitive maps, between-floor connectivity, and alignment 

information). According to the logical relation between multi-level cognitive maps and 

cross-level spatial tasks, the encoding of the z-axis offset is not necessary for the 

between-floor pointing and wayfinding tasks (see Section 2.4). Thus, the lack of an effect 

of the z-axis offset on the between-floor pointing and wayfinding performance is 

consistent with the framework of multi-level cognitive map development introduced in 

Sections 2.1 through 2.4. An implication of this finding is that some multi-level buildings 

such as stadiums and terrace-like architectures, although comprising multi-level 

structures, are not necessarily more challenging to learn and to navigate than their 

single-level counterparts. Although the effect of the z-axis offset was not observed in 

Experiment 1, it does not rule out an effect from the z-axis. It simply indicates that the 

z-axis offset alone is not inherently the problem. In the two preliminary studies (Giudice 
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& Li, 2012; Li & Giudice, 2013) and in previous literature (Street, 2012), the presence of 

a z-axis offset did indeed impair the development of multi-level cognitive maps. To 

address this issue, we argue that the z-axis offset increases the difficulty of learning a 

multi-level building when the adjacent floors are overlapped, meaning that the 

between-floor effects found in the aforementioned studies were caused by the 

combination of the between-floor overlap and the z-axis offset factors rather than the 

z-axis offset alone. This assertion is examined in Experiment 2.  

The lack of reliable differences between the 90° vs. 0° between-floor heading 

shift is inconsistent with the assumption based on the framework of multi-level cognitive 

map development. In Section 2.2.1, we predicated that when a multi-level building has no 

between-floor visual access and no visual access between OI-spaces, as is the case in 

Experiment 1, navigators have to obtain rotational displacements by updating heading 

information during vertical transition in order to integrate cross-level spatial knowledge. 

In this case, the 90° between-floor heading shift was a priori predicted to result in greater 

between-floor or between-region pointing errors. However, the results of Experiment 1 

demonstrated that the 90° between-floor heading shift did not affect users’ between-floor 

or between-region pointing performance. On the basis of this finding, we extended and 

refined the framework of multi-level cognitive map development (discussed in Section 

2.2) by postulating that complex between-floor heading shifts only impair users’ 
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development of multi-level cognitive maps if navigators depend solely on path 

integration for cross-level spatial knowledge integration. In Experiment 1, even though 

all buildings had no between-floor visual access and no visual access between OI-spaces, 

multiple floors of these buildings were non-overlapped and shared a common reference 

direction. Thus, they could use interior features such as walls or hallways to learn this 

reference direction. In this case, navigators did not rely only on path integration for 

consolidating cross-level spatial knowledge and thus the 90° between-floor heading shift 

did not impair users’ development of multi-level cognitive maps as much as anticipated. 

This assertion will be further studied in Experiment 3, in which we investigated whether 

a confusing heading shift (the combined factors of between-floor heading shift and 

portal-floor heading shift) would impair users’ development of multi-level cognitive 

maps in overlapped and aligned buildings. 

4.3 Experiment 2 (between-floor overlap and misalignment) 

4.3.1 Introduction 

The first research question addressed by Experiment 2 asks how the combination 

of the between-floor overlap and the z-axis offset factors affects the development of 

multi-level cognitive maps. In Experiment 1, we found that the z-axis offset cannot be 

solely attributable to the difficulty of integrating cross-level spatial knowledge. However, 
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in the two preliminary studies (Giudice & Li, 2012; Li & Giudice, 2013) and in the work 

of Street (2012), the presence of a z-axis offset indeed impaired the development of 

multi-level cognitive maps. We argue that the between-floor effects found in the 

aforementioned studies were caused by the combination of the between-floor overlap and 

the z-axis offset factors rather than the z-axis offset alone. This assertion is examined in 

the current study. 

Previous studies on qualitative spatial reasoning have found that direction relation 

between points can be implied by the relation of ancestor regions (i.e., regions the points 

located in) (Papadias & Egenhofer, 1997). With respect to multi-level built environments, 

the implication is that navigators can use the relation of two floors for the directional 

judgment of two positions located on the two floors. For instance, if two floors (A and B) 

are non-overlapped and floor A is located at the north of floor B, navigators can roughly 

estimate that the direction relations between two positions (p1 on floor A and p2 on floor 

B) could be north, northeast or northwest. However, if two regions are overlapped, there 

is information loss as no conclusion about the direction relation between points can be 

drawn based on ancestor regions (Papadias & Egenhofer, 1997). Thus, if floors A and 

floor B are overlapped, the direction relations between p1 and p2 could be arbitrary. In 

this case, when two floors of a building are overlapped, navigators cannot use their 

relation to imply the direction of two positions located on the two floors. In addition, as 
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discussed in Section 4.1, when two floors of a building are overlapped, there must be a 

set of positions within the two floors co-located at the same x-y coordinates. If the 

building has no visual access between OI-spaces and no between-floor visual access, 

there are often no information sources to link the vertical floors/regions. Thus, the 

combination of the between-floor overlap and the z-axis offset factors is anticipated to 

increase the difficulty of integrating cross-level spatial knowledge. This assertion is 

investigated in Experiment 2. On the other hand, the above analysis also indicates the 

need for improved visualization techniques, which are evaluated in Chapter 5. 

The second research question addressed by Experiment 2 asks how the floor 

misalignment affects the development of multi-level cognitive maps. Previous literature 

has found that navigators typically assume that the organization of a given floor extends 

to all floors (Carlson et al., 2010; Hölscher, Brösamle, & Vrachliotis, 2012). However, if 

two floors of a building are misaligned, this assumption is violated and navigators have to 

integrate the two misaligned local reference frames into a global multi-level cognitive 

map for accurate pointing and wayfinding between floors, which has been shown to be 

challenging and error-prone for humans to do accurately (see Section 2.2.1). Thus, we 

predicted that the presence of between-floor misalignment would impair the development 

of multi-level cognitive maps. This assertion is investigated in the current study. Werner 

and Schindler (2004) studied the effect of misalignment of local reference frames on 
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cognitive map development in a single-floor virtual building. They systematically 

manipulated the orientation of an elevator, either misaligning its axis or aligning it with 

respect to the floor’s local reference frame. The results showed that participants’ pointing 

accuracy and wayfinding performance was significantly diminished in the misaligned 

condition relative to the aligned condition. However, no empirical studies have examined 

the effect of the between-floor misalignment on the integration of cross-level spatial 

knowledge, as is the focus of the current study. In this thesis, between-floor alignment 

information is proposed to be an important component of multi-level cognitive maps. 

Thus, if an effect of the between-floor misalignment is observed on users’ cross-level 

spatial behavior performance, the findings will help validate the proposed framework of 

multi-level cognitive map development. 

4.3.2 Methods 

Sixteen participants (eight females and eight males, mean age = 21.6, SD = 1.8) 

were recruited from the University of Maine student body. All participants differed from 

the participants in Experiment 1.  

We used the same software package and experimental apparatus as in Experiment 

1 and designed four virtual buildings, seen in Figure 4.7. Each floor of the four buildings 

had the same floor layout as in Experiment 1. However, the four buildings were 
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systematically manipulated based on two between-floor topological and structural 

properties (between-floor overlap and misalignment). In Experiment 2, buildings 3 and 4 

consisted of two overlapped floors, whereas buildings 1 and 2 had only a single floor 

with two regions. The two regions of buildings 1 and 2 were matched with the two floors 

of buildings 3 and 4 in regard to layout complexity. Thus, by comparing users’ 

performance between non-overlapped single-floor buildings (1 and 2) and overlapped 

two-floor buildings (3 and 4), we can examine the effect of the between-floor overlap 

(combined with the z-axis factor) on the development of multi-level cognitive maps. In 

addition, the second region/floor of buildings 2 and 4 were rotated 45° with respect to the 

first region/floor. By comparing users’ performance between the two types of buildings 

(45° perspective shift vs. no perspective shift), we can examine the effect of the floor 

misalignment on the development of multi-level cognitive maps.  

 

Figure 4.7. Floor layouts of Experiment 2. 
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The experimental procedure was the same as Experiment 1, except that the tested 

environments differed. All participants followed the same procedure in which they first 

learned a multi-level building and then took part in two cross-level spatial tasks: 

between-floor pointing and wayfinding (see Sections 2.4 and 3.3). 

4.3.3 Results 

A repeated measures ANOVA was run for each of the four dependent measures 

(absolute pointing error, pointing latency, wayfinding accuracy, and wayfinding 

efficiency) with two within-subject factors (between-floor overlap and misalignment). 

Significant main effects of between-floor overlap were observed for both pointing error 

and pointing time, with pointing in non-overlapped buildings being reliably faster and 

more accurate than in overlapped buildings: pointing error, F(1, 63) = 56.977, p < .0001, 

2 = .475; and pointing time, F(1, 63) = 10.215, p < .005 , 2 = 140. Significant main 

effects of misalignment were observed for all measures: pointing error, F(1, 63) = 37.366, 

p < .0001, 2 = .372; pointing time, F(1, 63) = 14.856, p < .0005, 2 = 191; wayfinding 

accuracy, F(1, 31) = 5.423, p < .05 , 2 = .149; and wayfinding efficiency, F(1, 31) = 

6.249, p < .05, 2 = .168.  
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Figure 4.8. Mean absolute pointing error for Experiment 2. 

The interaction effect between misalignment and between-floor overlap was 

significant for pointing error and pointing time: pointing error, F(1, 63) = 12.226, p 

< .001, 2 = .163, and pointing time, F(1, 63) = 4.920, p < .05, 2 = .072. Subsequent 

Dunn–Sidak pairwise comparisons showed that both interactions were driven by the 

between-floor misalignment condition, which took longer and had a larger error than the 

two alignment conditions (all ps < .001). 
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Table 4.2. Mean absolute pointing error, pointing latency, wayfinding accuracy, and 

wayfinding efficiency in Experiment 2. 

Dependent Variables 

 

Independent Variable II 

Independent Variable I 

Non-overlap Between-floor overlap 

Absolute pointing error Alignment  20.84 (3.43) 38.95 (5.17) 

 Misalignment 32.62 (2.86) 80.04 (6.15) 

Pointing latency Alignment 14.70 (1.18) 17.07 (1.42) 

 Misalignment 19.80 (1.76) 30.88 (4.15) 

Wayfinding accuracy Alignment 87.5% (5.9%) 87.5% (5.9%) 

 Misalignment 75.0% (7.8%) 71.9% (8.1%) 

Wayfinding efficiency Alignment 85.1% (5.9%) 87.5% (5.9%) 

 Misalignment 73.3% (7.6%) 71.1% (8.0%) 

4.3.4 Discussion 

The primary goal of Experiment 2 was to investigate whether the combination of 

the between-floor overlap and the z-axis offset factors or the floor misalignment factor 

impairs the development of multi-level cognitive maps. The results demonstrated that 

participants took significantly more time and made larger pointing errors in the 

overlapped conditions than in non-overlapped conditions, suggesting that between-floor 
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overlap undermined users’ development of multi-level cognitive maps. However, no 

effects of the between-floor overlap were observed for the two wayfinding measures. Our 

lack of an effect may be due to our environments, as the two floors of all Experiment 2 

buildings were connected by only one elevator, so the between-floor overlap factor did 

not affect the between-floor connectivity information. According to the logical relation of 

multi-level cognitive maps and cross-level spatial tasks (see Chapter 2.4), the 

between-floor overlap factor should not affect the between-floor wayfinding performance. 

Thus, the finding of the between-floor overlap is consistent with the predictions based on 

the framework of multi-level cognitive map development. The effect of the expected 

between-floor overlap on between-floor pointing performance was observed, suggesting 

that it is more difficult to maintain the spatial relation of objects between overlapped 

floors than non-overlapped environments. Thus, the assertion that the between-floor 

effects observed in the two preliminary studies and in the one by Street (2012) were 

caused by the combination of the between-floor overlap and the z-axis offset rather than 

the z-axis offset alone is validated. In the real world, almost all buildings are designed 

with fully or partially overlapped floors, meaning that the between-floor overlap property 

is one of the most prominent topological characteristics of multi-floor buildings. Results 

of Experiment 2 showed that there is a trade-off between the benefits of efficient use of 
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land space and the increased difficulty in forming a multi-level cognitive map. This issue 

will be addressed by improved visualization interfaces (see Chapter 5). 

The results of Experiment 2 revealed that participants had greater pointing errors, 

longer pointing latencies, and lower wayfinding accuracy and efficiency in misaligned 

buildings than in aligned buildings, providing compelling evidence that the floor 

misalignment is a substantial factor leading to the difficulty of developing accurate 

multi-level cognitive maps. This finding is consistent with the predictions based on the 

framework of multi-level cognitive maps (Sections 2.2-2.4). Given that in the current 

study two floors of a building were misaligned, the misalignment factor violated the 

assumption that two floors of a building share a common spatial reference frame. As a 

result, navigators had to integrate misaligned cross-level spatial knowledge into a 

multi-level cognitive map based on their path integration (all Experiment 2 buildings had 

no visual access between OI-spaces and no between-floor visual access). Thus, users’ 

between-floor pointing performance was significantly diminished in the misaligned 

conditions relative to the aligned conditions. In addition, the misalignment factor causes a 

portal-floor heading shift on the second floor (β2), meaning that the between-floor 

connectivity information was affected. Thus, users’ between-floor wayfinding 

performance was also undermined in the misaligned conditions relative to the aligned 

conditions. These findings offer an important implication for architectural design, namely, 
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when a multi-level building has no between-floor visual access and no visual access 

between OI-spaces, misaligned floors should be avoided and a common spatial reference 

frame between floors is critically important for navigators to be able to integrate 

cross-floor spatial knowledge. For instance, the common spatial reference frame can be 

created by making the salient common axes or boundaries common between floors. 

However, in the physical world, a common spatial reference frame is not always available 

and making the salient axes common through structural modifications is impractical. 

Thus, improved visualization interfaces, as are investigated in Chapter 5, play an 

important role in assisting users to learn this important information regarding 

between-floor misalignment. 

4.4 Experiment 3 (45° portal-floor heading shift) 

4.4.1 Introduction 

In Experiment 1, we found that the 90° between-floor heading shift does not 

impair the development of multi-level cognitive maps in non-overlapped buildings. On 

this basis, we argued that complex between-floor heading shifts only impair users’ 

development of multi-level cognitive maps if navigators solely depend on path 

integration for cross-level spatial knowledge integration. This assertion is further 

investigated in the current study. In Experiment 3, we designed two overlapped and 
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aligned buildings using VEs, as pictured in Figure 4.9. The design was similar to that of 

Experiment 2, except that the elevator had both a 90° between-floor heading shift and a 

45° portal-floor angular offset, depicted in Figure 4.9.  

 

Figure 4.9. Floor layouts of Experiment 3. 

In Experiment 3, we investigated whether a confusing heading shift (the 

combined factor of between-floor heading shift α and portal-floor heading shift β, called 

misaligned portals) would impair users’ development of multi-level cognitive maps. All 

buildings of Experiment 3 lacked between-floor visual access and no visual access 

between OI-spaces. However, all buildings were overlapped and vertically-aligned, 

meaning that they all shared a common spatial reference frame. Based on the logical 

relation between multi-level cognitive maps and cross-level spatial tasks, we postulated 

that the confusing heading shift after vertical transition would increase the difficulty of 

path integration and subsequently impair users’ development of multi-level cognitive 

maps. However, as described earlier, if navigators could use interior features such as 
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walls or hallways to learn the common spatial reference frame, they would not need to 

depend on path integration for cross-level spatial knowledge integration. Thus, the 

combined factors of between-floor heading shift and portal-floor heading shift would not 

impair users’ development of multi-level cognitive maps.  

4.4.2 Methods 

Sixteen new participants (eight females and eight males, mean age = 20.2, SD = 

1.2) were recruited from the University of Maine student body. We used the same 

software package and experimental apparatus as in Experiment 2. The experimental 

procedure was the same as Experiment 1, except that different experimental 

environments were used. 

4.4.3 Results 

A one-way repeated measures ANOVA was run for each of the four dependent 

measures (absolute pointing error, pointing latency, wayfinding accuracy, and wayfinding 

efficiency), with one within-subject factor of misaligned portals (the combined factor of 

between-floor heading shift and portal-floor heading shift). Although a significant main 

effect was observed for pointing latency, F(1, 63) = 4.56, p < .05, 2 = .068, no effect was 

found for any of the other three measures.  
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Figure 4.10. Mean pointing latency for Experiment 3. 

Based on the observed effect sizes, we used G*power to determine how many 

subjects would have been necessary for statistical significance at power level of .95. We 

found that in order to find statistical significance, sample size was not dramatically 

increased (n < 1,000), suggesting that the effect of misaligned portals might exist but it 

was not observed in this study. However, the bottom line is the overall results indicate 

that the misaligned portals factor did not reliably impair users’ development of 

multi-level cognitive maps in aligned buildings. 
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Table 4.3. Mean absolute pointing error, pointing latency, wayfinding accuracy, and 

wayfinding efficiency in Experiment 3. 

Dependent Variables 

(Measures) 

Independent Variable I 

Aligned portals Misaligned portals 

Absolute pointing error 32.22 (3.38) 28.67 (3.24) 

Pointing latency 17.17 (1.75) 21.51 (2.04) 

Wayfinding accuracy 90.6% (5.2%) 78.1% (7.4%) 

Wayfinding efficiency 89.0% (5.2%) 75.9% (7.3%) 

4.4.4 Discussion 

The primary goal of Experiment 3 was to investigate whether the combined 

factors of between-floor heading shift and portal-floor heading shift (misaligned portals) 

would impair users’ development of multi-level cognitive maps in an aligned building. 

The results showed that the combined factor (misaligned portals) caused only slightly 

longer pointing latency, and no reliable differences of absolute pointing error, wayfinding 

accuracy and wayfinding efficiency were observed between the control condition (no 

heading shift) and the misaligned portals condition (confusing heading shift). This lack of 

an effect on the absolute pointing error is likely due to the environments tested, as all 

Experiment 3 buildings were aligned and navigators might have used interior features 
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such as hallways or walls to learn the common spatial reference frame between floors. It 

should be noted that in the learning phase navigators needed to learn the building twice 

and then took part in a criterion pointing task to ensure that they had built accurate 

single-level survey knowledge. During the two phases, navigators might have deduced 

that the two floors of Experiment 3 buildings were aligned and shared a common spatial 

reference. Thus, the confusing heading shift (the combined factor of between-floor 

heading shift and portal-floor heading shift) surprisingly did not largely impair users’ 

ability to form multi-level cognitive maps. This finding validates our assertion that 

complex between-floor heading shifts only impair users’ development of multi-level 

cognitive maps if navigators solely depend on the path integration process for cross-level 

spatial knowledge integration. Nevertheless, increased pointing latency suggests that 

there was additional cognitive effort required to perform the between-floor pointing task 

and it is unclear whether the confusing heading shift leads to the difficulty of learning a 

building with misaligned floors. These issues will be addressed in future studies. 

4.5 Experiment 4 (global landmarks) 

4.5.1 Introduction 

In Section 2.2.2, we argued that visual access to a global landmark from within a 

building promotes users’ development of multi-level cognitive maps (Hypothesis 2), and 
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if a global landmark is visible from both indoor and outdoor spaces, it will facilitate both 

cross-level spatial knowledge integration and the integration of OI-spaces (Hypothesis 3). 

To evaluate these two hypotheses, Experiment 4 examined the effects of global 

landmarks (both indoor and outdoor) on users’ development of multi-level cognitive 

maps. 

Global landmarks are salient environmental features visible at a large spatial scale 

from within the environment. Previous literature on outdoor wayfinding has found clear 

evidence that these global landmarks provide a fixed spatial reference frame for 

navigators to integrate local spatial knowledge into a global cognitive map (see Steck & 

Mallot (2000) for review). However, there is no empirical evidence on the effect of global 

landmarks observed from within a building in supporting users’ ability to form 

multi-level cognitive maps. In a previous study, we investigated whether two 

vertically-aligned chandeliers co-located on separate floors, called contiguous landmarks, 

could serve as a global landmark and facilitate users’ development of a multi-level 

cognitive map (see Experiment 7). However, we observed no reliable effects of 

contiguous indoor landmarks and very few users even noticed that the chandeliers were 

vertically aligned. We interpreted the absence of an effect as owing to the fact that users 

had to perceive each chandelier discretely on separate floors, making it hard for them to 

mentally link the two inter-floor locations without having direct access to each other. 
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These results suggest that indoor global landmarks for multi-level built environments 

need to be more than co-located at the same x-y coordinates between floors, they must 

also be directly perceivable from multiple locations/levels of the building. Therefore, in 

Experiment 4 we designed an outdoor global landmark (a church) and an indoor global 

landmark (a statue in an atrium), both of which were visible from within the building 

over multiple locations, as shown in Figure 4.11. 

   

Figure 4.11. Outdoor and indoor global landmarks. 

A global landmark, serving as a fixed global spatial reference, helps users 

consolidate single-level spatial knowledge into a consistent/global multi-level cognitive 

map. For instance, navigators can use global landmarks to learn the between-floor 

perspective shift γ and to estimate relative direction between two positions located on two 

floors (see Section 2.2.2 for details). Thus, we propose that users would develop a more 

accurate multi-level cognitive map when they could see the global landmark from both 

floors rather than only from a single floor. We predict that both a statue in an atrium and 

an external landmark can serve as a global landmark, as they are directly perceivable 
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from multiple locations/levels of a building. This assertion was evaluated in the current 

study. 

The present research also aims to investigate whether visual access to global 

landmarks can facilitate users’ integration of outdoor and indoor spaces, which has 

attracted increasing attention in recent years (see (Giudice et al., 2010) for review). In the 

current studies, OI-space integration was measured by pointing latency and error 

performance when pointing from indoor locations (e.g., the building’s rooms) to an 

outdoor location, e.g., a parking lot. 

4.5.2 Methods 

Sixteen participants (eight females and eight males, M=20.1, SD=2.0) were 

recruited from the University of Maine student body.  

The experimental environment was displayed on a Samsung 43" Class Plasma 

HDTV monitor running at 60 Hz and at a resolution of 1024 × 768. The desktop VEs 

were run with a MacBook Pro (2.2 GHz Intel Core i7). The Unity 5.1 VR engine (Unity 

Technologies) was used as the VE platform supporting users’ real-time navigation and 

recording their trajectory and test performance. Our environments comprised four 

two-level buildings, as shown in Figure 4.12. Participants used an elevator to move 

between floors. All buildings were matched for layout complexity and topology.  
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Figure 4.12. Floor layouts of Experiment 4. The solid line represents the first-floor layout 

and the dashed line represents the second-floor layout. 

Each virtual building contained four target rooms: a bathroom, a dining room, a 

conference room, and an office. In addition, each environment had a number of empty 

rooms evenly located in the building, as shown in Figure 4.13. A set of fire extinguishers 

or water fountains were located directly above/below target rooms, and served as the 

targets for the drilling task, as described in the experimental procedure. Each 

environment included a global landmark—either a church or a statue in an 

atrium—visible from a single floor or from both floors. As shown in Figure 4.13, each 

floor included a number of windows, through which users had visual access to the global 

landmark. Each environment also contained a parking lot. Participants were positioned at 

the parking lot at the beginning of the experiment. However, when inside the building, 

the parking lot was only visible from the window opposite the elevator, as shown in 

Figure 4.13. Thus, the parking lot was not a global landmark in the current studies, but it 

served as a fixed geo-reference for the outdoor environment. We tested users’ integration 
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between indoor and outdoor spaces by asking them to point from rooms inside the 

building to this parking lot.  

 

Figure 4.13. Visual access to the indoor and outdoor global landmark. 

A within-subject design was adopted, with the sixteen participants running in all 

four conditions: (1) single-floor visual access to an outdoor global landmark, (2) 

single-floor visual access to an indoor global landmark, (3) two-floor visual access to an 

outdoor global landmark, and (4) two-floor visual access to an indoor global landmark). 

All participants in Experiments 4-6 followed the same procedure: they first learned a 

multi-level building and then took part in three cross-level spatial tasks: pointing and 

wayfinding between floors and a drilling task (see Section 2.4 and 3.3 for more details). 

4.5.3 Results 

The five dependent measures (pointing latency, absolute pointing error, 

wayfinding accuracy, wayfinding efficiency, and drilling accuracy) were analyzed for 
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each participant. A 2 (visual access: single-floor vs. two-floor) × 2 (global landmark type: 

indoor vs. outdoor) × 3 (pointing target type: global landmark, parking lot, and building 

rooms) repeated-measures ANOVA was conducted for each of the two dependent 

measures of pointing latency and absolute pointing error. Significant main effects of 

visual access were observed for both measures, with pointing in the two-floor visual 

access condition being faster and more accurate than pointing in the single-floor visual 

access condition: pointing latency, F(1, 63) = 11.151, p < .001, 2 = .150; and absolute 

pointing error, F(1, 63) = 10.057, p < .005, 2 = .138.  

 

Figure 4.14. Mean absolute pointing error for Experiment 4. 

Significant main effects of target type were also observed for both pointing 

latency and absolute pointing error: latency, F(2, 126) = 58.361, p < .0001, 2 = .481; and 

error, F(2, 126) = 15.631, p < .0001, 2 = .199. Subsequent Dunn–Sidak pairwise 

comparisons showed that pointing to the global landmark was faster and more accurate 
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than pointing to the parking lot and the internal rooms (all ps < .001). A significant global 

landmark type by pointing type interaction was observed for pointing error, F(2, 126) = 

7.198, p < .001, 2 = .103. Subsequent Dunn–Sidak pairwise comparisons demonstrated 

that this significant interaction was driven by the trials requiring pointing to the parking 

lot, which was reliably more accurate in the outdoor global landmark conditions than 

with the indoor global landmark conditions (all ps < .05). 

 

Figure 4.15. Mean drilling accuracy for Experiment 4. 

A 2 (visual access) × 2 (global landmark type) repeated-measures ANOVA was 

conducted for each of the three dependent measures of wayfinding accuracy, wayfinding 

efficiency, and drilling accuracy. A significant main effect of global landmark type was 

observed for drilling accuracy, with drilling performance in the outdoor global landmark 

condition found to be more accurate than performance in the indoor global landmark 
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condition, F(1, 63) = 4.817, p < .05, 2 = .071. There were no significant main effects of 

visual access (all ps > .05) or global landmark type (all ps > .05) on wayfinding accuracy 

or wayfinding efficiency. 

Table 4.4. Mean absolute pointing error and pointing latency in Experiment 4. 

Dependent 

Variables 

Pointing target type Global landmark type 

Visual access 

Two-floor  Single-floor  

Absolute 

pointing error 

Global landmark  Outdoor  12.33 (1.96) 19.42 (2.80) 

Indoor 6.57 (0.91) 13.56 (3.76) 

Parking lot Outdoor  22.63 (3.26) 19.55 (2.56) 

Indoor 25.090 (4.07) 33.31 (4.45) 

Building rooms Outdoor  16.42 (2.85) 27.99 (4.49) 

Indoor 15.21 (1.98) 21.73 (3.25) 

Pointing 

latency 

Global landmark  Outdoor  3.77 (0.28) 7.07 (1.19) 

Indoor 4.05 (0.23) 5.02 (0.44) 

Parking lot Outdoor  6.83 (0.69) 8.09 (0.82) 

Indoor 7.95 (0.95) 8.59 (0.90) 

Building rooms Outdoor  12.19 (1.50) 13.10 (1.71) 

Indoor 11.22 (1.28) 14.77 (1.38) 
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Table 4.5. Mean wayfinding accuracy, wayfinding efficiency, and drilling accuracy in 

Experiment 4. 

4.5.4 Discussion 

The primary goal of Experiment 4 was to investigate whether increasing visual 

access to an indoor or outdoor global landmark observed through the building’s windows 

would assist users’ development of a multi-level cognitive map. As we predicted, the 

results demonstrated that users’ pointing was reliably faster and more accurate in the 

two-floor visual access condition than in the single-floor visual access condition, 

providing clear evidence that increasing visual access to a global landmark (both indoor 

and outdoor) through direct window access significantly promoted users’ ability to form 

Dependent 

Variables 

Pointing target type Global landmark type 

Visual access 

Two-floor  Single-floor  

Wayfinding 

accuracy 

 Outdoor  78.1% (5.2%) 70.3% (5.8%) 

 Indoor 71.9% (5.7%) 65.6% (6.0%) 

Wayfinding 

efficiency 

 Outdoor  75.3% (5.2%) 67.3% (5.7%) 

 Indoor 67.1% (5.5%) 63.1% (5.9%) 

Drilling 

accuracy 

 Outdoor  93.8% (3.0%) 93.8% (3.0%) 

 Indoor 81.3% (4.9%) 90.6% (3.7%) 
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multi-level cognitive maps. This finding supports our hypothesis that both an outdoor and 

indoor global landmark can serve as a fixed spatial reference frame for navigators to 

integrate multi-level spatial knowledge into a globally coherent multi-level cognitive map, 

which provides validation for Hypothesis 2 of this thesis. The results also demonstrated 

that the outdoor global landmark not only aided with the development of multi-level 

cognitive maps, but also assisted with the integration of indoor and outdoor spatial 

reference frames, thereby providing corroborating evidence for Hypothesis 3 of this thesis. 

Previous literature has discussed that increasing visual access to important level-related 

building features such as elevators could support users’ spatial learning and wayfinding 

of a multi-level building (Giudice & Li, 2012; Hölscher et al., 2006). Our current 

research extends these earlier studies and demonstrates that increasing visual access to a 

global indoor or outdoor landmark can also improve the performance of between-floor 

pointing. This research provides important empirical evidence for the framework of 

multi-level cognitive map development (discussed in Section 2.2.2); for instance, users 

could learn between-floor alignment by computing the bearing difference to a global 

landmark rather than constantly updating their heading directions during vertical travel. 

In this case, the difficulty of learning a multi-level building with confusing 

elevators/staircases could be greatly reduced (or alleviated) if visualization interfaces can 

assist navigators to have access to a global landmark (see Chapter 5). Experiment 4 
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results provide important empirical foundations for the design of Augmented Reality (AR) 

models used in Experiments 5 and 6, which aim to use AR technology to extend the 

benefit of global landmarks providing a fixed spatial reference frame to buildings that 

otherwise do not have visual access to this cue.  

There was a small reversal of the effect of global landmark type on drilling 

accuracy, suggesting that the outdoor global landmark was more efficient for promoting 

users’ learning of vertical alignment information than the indoor global landmark. 

However, the predicted effect of visual access on drilling accuracy was not observed, 

meaning that increased visual access to the landmark from both floors did not help users 

learn accurate between-floor alignment information. We believe that drilling accuracy 

may have been elevated in Experiment 4 because the fire extinguishers and water 

fountains were always located directly above/below a target room and participants could 

have used this as a cue. This issue is addressed in Experiment 5. 

4.5 Summary 

In Chapter 4, we described four experiments (Experiments 1-4) using VEs to 

evaluate (1) five multi-level structural and topological properties, and (2) global indoor 

and outdoor landmarks, on the development of multi-level cognitive maps. Experiments 

1-3 were conducted to evaluate Hypothesis 1, which asserts that between-floor structural 
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and topological properties of buildings impair users’ development of multi-level 

cognitive maps. Hypothesis 1 was partially validated. Results of Experiment 2 

demonstrated that the between-floor overlap and the misalignment factors substantially 

increased the difficulty of building multi-level cognitive maps. Results of Experiments 1 

and 3, however, showed that the z-axis offset, the between-floor heading shift and the 

combined factor (the between-floor heading shift and the portal-floor heading shift) did 

not make it more difficult to form multi-level cognitive maps in aligned buildings 

(overlapped or non-overlapped). The findings of Experiments 1-3 were generally 

consistent with the predictions based on the framework of multi-level cognitive map 

development (Section 2.2). However, on the basis of the findings of Experiment 1 (based 

on the 90° between-floor heading shift factor), we extended the framework of multi-level 

cognitive map development to reflect that complex between-floor heading shifts only 

impair users’ development of multi-level cognitive maps if navigators solely depend on 

path integration for cross-level spatial knowledge integration. This assertion was further 

validated in Experiment 3. Experiment 4 was conducted to evaluate Hypothesis 2, which 

asserts that visual access to a global landmark can promote users’ development of 

multi-level cognitive maps) and Hypothesis 3, which asserts that if a global landmark is 

visible from both indoor and outdoor spaces, it will facilitate both cross-level spatial 

knowledge integration and the integration of OI-spaces. Both of these hypotheses were 
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validated by the results of Experiment 4, providing important empirical foundations for 

the design of the visualizations used in Experiments 5 and 6, which aim to use AR 

technology to extend the benefit of global landmarks to buildings that otherwise do not 

have visual access to this cue. 
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CHAPTER 5 

EVALUATION OF VISUALIZATION INTERFACES FOR ASSISTING THE 

DEVELOPMENT OF MULTI-LEVEL COGNITIVE MAPS 

5.1 Introduction 

In Section 2.2.3, we discussed that global landmarks are often not available in 

multi-level indoor environments, so the advantage of these global landmarks—serving as 

a fixed spatial reference frame—is often greatly reduced when learning and navigating 

within buildings (Giudice et al., 2010). However, we argued that we can use augmented 

reality (AR) technology to increase visual access to global landmarks, which could 

facilitate users’ development of multi-level cognitive maps (Hypothesis 4). In this chapter, 

we conducted two experiments (Experiments 5-6) using VEs to evaluate this hypothesis. 

In addition, Experiment 7 was conducted using VEs to evaluate Hypothesis 5: schematic 

maps that effectively convey the desired multi-level building information to users could 

alleviate the challenge of integrating cross-level spatial knowledge. 
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5.2 Experiment 5 (icon-model and wireframe-model) 

5.2.1 Introduction 

The results of Experiment 4 showed that increasing visual access to a global 

landmark observed through the building’s windows promoted users’ development of 

multi-level cognitive maps. However, as discussed earlier, direct access to global 

landmarks is often not available from within buildings and increasing visual access 

through structural modifications is impractical. Thus, the current study (Experiment 5) 

aimed to use AR technology to extend the benefits found in Experiment 4 to many 

buildings without physical visual access to global landmarks. We proposed and evaluated 

two AR models to improve visualization (an icon-model vs. a wireframe-model), as 

shown in Figure 5.1.  

 

Figure 5.1. Icon-model (left) and wireframe-model (right) of the global landmark. 

An icon-model uses a visual symbol to indicate the global landmark’s direction. 

By contrast, a wireframe-model indicates not only the direction of the global landmark, 

as the icon-model does, but also the perspective from which users can see the landmark, 



 

130 

 

   

and its edges, as shown in Figure 5.1. Users’ performance with the two AR visualization 

techniques were compared to two control conditions: (1) no visual access to outdoor 

spaces, which is the baseline control condition, and (2) a window-access condition. These 

two AR models require fewer computational resources to render and take less time to 

create when compared to other visualization techniques, as reviewed in (Dey & Sandor, 

2014). Thus, if one (or both) were found to be as efficient as the window-access condition 

in facilitating multi-level cognitive map development and subsequent cross-floor spatial 

behaviors, we would have an economical and broad-based solution for improving indoor 

visualization. 

5.2.2 Methods 

Sixteen unique students participated in Experiment 5. The design was similar to 

that of Experiment 4, except for the following changes. First, only the church was used as 

the global landmark. Second, the locations of the fire extinguishers and water fountains 

were adjusted to ensure that only a subset of them were vertically aligned with a target 

room. 

5.2.3 Results 

A repeated-measures ANOVA was conducted for each of the two dependent 

measures of pointing latency and absolute pointing error, with the four conditions of 
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visual access and three pointing target types as two within-subject factors. A significant 

main effect of visual access was observed for absolute pointing error, F(3, 189) = 14.925, 

p < .0001, 2 = .192, with pointing in the window-access condition being more accurate 

than the no visual access condition and the two AR interface conditions (all ps < .0001). 

This finding suggests that the visualization of the global landmark provided by the two 

AR conditions was not as effective as the “gold standard” of direct window access in 

assisting users’ development of a multi-level cognitive map. Significant main effects of 

target type on pointing performance were observed for both pointing latency and absolute 

pointing error: latency, F(2, 126) = 25.420, p < .0001, 2 = .287; and error, F(2, 126) = 

7.175, p < .001, 2 = .102. Subsequent Dunn–Sidak pairwise comparisons showed that 

pointing performance to the global landmark was more accurate than pointing to the 

parking lot (p < .005) but not more accurate than pointing to the building’s rooms (p 

= .080). Even though users were assisted with the AR visualization of the global 

landmark (i.e., the church), no reliable differences were found between pointing to the 

church and to the building’s rooms, suggesting that the two AR models were not as 

effective as direct window access in enhancing users’ spatial awareness of the church and 

thus, it failed to serve as a “global landmark" in this study. One explanation for this result 

is the lack of depth information about the global landmark within the two AR models. 

Without this depth information, users may have perceived the global landmark to be 
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“floating” in space, leading to an erroneous perception of its true location. In addition, no 

outside boundary information of the building was visible from the AR visualizations, as 

could be seen through the building’s windows. 

 

Figure 5.2. Mean absolute pointing error for Experiment 5. 

A repeated-measures ANOVA was conducted for each of the three dependent 

measures of wayfinding accuracy, wayfinding efficiency, and drilling accuracy, with the 

four conditions of visual access as a within-subject factor. There was no significant main 

effect of visual access for any measure (all ps > .05). The average drilling accuracy (M = 

57.4%, SE = 1.9%) was significantly lower than that of Experiment 4 (M = 89.8%, SE = 

1.9%), t(510)=8.935, p < .0001, supporting our assertion that the design of the buildings 

in Experiment 4 artificially elevated users’ drilling accuracy performance. Even with 
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these modifications, drilling accuracy was still not promoted by the window-access 

condition, suggesting that direct visual access to a global landmark alone does not 

facilitate users’ learning of between-floor alignment. The drilling task requires accurate 

between-floor alignment information, which was not sufficiently provided by global 

landmarks in the current study. We believe that to promote drilling accuracy, the AR 

interface must also assist users to visualize the objects above/below their current location. 

This assertion is evaluated in Experiment 6. 

 

Figure 5.3. Mean drilling accuracy for Experiment 5. 
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Table 5.1. Mean absolute pointing error, pointing latency, wayfinding accuracy, 

wayfinding efficiency, and drilling accuracy in Experiment 5. 

5.2.4 Discussion 

The primary goal of Experiment 5 was to investigate whether increasing visual 

access to a global landmark using two AR interfaces (an icon-model and a 

wireframe-model) would assist users’ development of a multi-level cognitive map. The 

results of Experiment 5 showed that the two simply rendered AR models, although 

Dependent 

Variables 

Pointing 

target type 

Visual access 

No visual  

access  
Icon-model Wireframe-model 

Two-floor 

visual access 

Absolute 

pointing 

error 

Global 

landmark 44.89 (5.95) 28.18 (4.84) 41.22 (5.92) 11.07 (1.22) 

 
Parking lot 

50.57 (6.15) 58.34 (6.16) 58.01 (6.43) 26.26 (4.06) 

 
Building 

rooms 
36.37 (4.61) 49.26 (6.53) 42.88 (6.07) 30.22 (5.00) 

Pointing 

latency 

Global 

landmark  
8.80 (1.40) 6.02 (0.72) 7.76 (1.33) 4.10 (0.35) 

 
Parking lot 

7.00 (1.13) 6.19 (0.789) 7.18 (0.90) 7.12 (1.03) 

 
Building 

rooms 
14.08 (2.15) 13.82 (1.83) 13.28 (2.17) 11.99 (1.48) 

Wayfinding 

accuracy 
 51.6% (6.3%) 40.6% (6.2%) 40.6% (6.2%) 46.9% (6.3%) 

Wayfinding 

efficiency 
 50.9% (6.3%) 40.0% (6.1%) 40.0% (6.1%) 46.0% (7.2%) 

Drilling 

accuracy 
 62.5%(6.1%) 54.7% (6.3%) 57.8% (6.2%) 54.7% (6.3%) 
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resource efficient, did not provide sufficient visualization fidelity, and thus, were not 

effective for facilitating multi-level cognitive map development. 

5.3 Experiment 6 (X-ray AR visualization) 

5.3.1 Introduction 

The AR visualization models in Experiment 5 had three shortcomings: (1) they 

provided no depth information about the global landmark, (2) they could not help users 

perceive what was directly above or below their current location, and (3) users were 

constantly exposed to the AR information through an always-on interface. On the basis of 

the Experiment 5 findings and acknowledging these limitations, we redesigned an X-ray 

visualization in Experiment 6 by allowing navigators to see transparent walls, the global 

landmark, and the horizon of the outdoor space, as shown in Figure 5.4. The X-ray 

visualization provided access to depth information about the global landmark, similar to 

the access afforded through the building’s windows. Thus, it is anticipated to be as 

efficient as direct window access in assisting users’ development of multi-level cognitive 

maps. Importantly, the X-ray visualization also facilitates users to perceive what is 

directly above or below their current location. Thus, it is also predicted that users’ drilling 

accuracy will be promoted by access to this AR interface in Experiment 6. In addition, 

users could turn on/off the AR information on-demand.   
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Figure 5.4. An X-ray visualization with depth information. 

A second goal of Experiment 6 was to investigate whether visual access to 

multiple global landmarks is more efficient than visual access to a single global landmark 

for users’ development of multi-level cognitive maps. Previous literature has discussed 

several methods for how humans use landmarks for self-localization, such as computing 

position using bearing and distance to a single landmark, computing position using 

distances to multiple landmarks (trilateration), and computing position using bearings or 

bearing differences to multiple landmarks (triangulation), as reviewed in (Loomis, et al., 

1999). Visual access to multiple global landmarks has been used to help self-localization 

in outdoor spaces (see (Steck & Mallot, 2000) for review). However, little is known about 

the effect of having visual access to multiple global landmarks in multi-level built 

environments and there is no empirical evidence on the effect of access to global 

landmarks perceived through AR interfaces on users’ development of a multi-level 

cognitive map. This issue is evaluated in the current study.  
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In Experiment 6, we evaluated the X-ray visualization with two global landmark 

conditions (single global landmark access vs. multiple global landmark access), 

compared to two control conditions (no visual access to outdoor spaces vs. direct 

window-access), as were used in Experiment 5. In addition to the church, four distinctive 

town houses were located on one side of the building, serving as landmarks. In the single 

global landmark access condition, only the church was visible through the X-ray 

visualization, whereas in the multiple global landmarks condition, both the houses and 

the church were visible throughout the building via the X-ray visualization. 

5.3.2 Methods 

Sixteen unique students participated in Experiment 6. The design was similar to 

that of Experiment 5, except that there was only one visualization interface evaluated but 

with two global landmark conditions. 

5.3.3 Results 

A repeated-measures ANOVA was conducted for each of the two dependent 

measures of pointing latency and absolute pointing error, with the four conditions of 

visual access and three pointing target types as two within-subject factors. A significant 

main effect of visual access was observed for absolute pointing error, F(3, 189) = 10.746, 

p < .0001, 2 = .146, with pointing in the X-ray visualization (single global landmark 
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access) condition and the window-access condition being more accurate than the no 

visual access condition (all ps < .0005). We found compelling evidence that the X-ray 

visualization (single global landmark access) is as effective as the gold standard of 

window-access in promoting users’ development of multi-level cognitive maps. Note that, 

users’ pointing error to the parting lot was even numerically larger in the window-access 

condition than in the X-ray visualization condition. With the assistance of the X-ray 

visualization, users had visual access to the global landmark, the parking lot and the 

building’s rooms from anywhere in the building. Thus, they could learn the spatial 

relations between places within the multi-level built environment from any location, 

which was not the case with windows-based access, and this increased spatial 

visualization aided the development of a multi-level cognitive map.  

No significant effect between the two global landmark conditions of the X-ray 

visualization was observed (single global landmark access vs. multiple global landmark 

access) (p > .05). This result suggests that increasing visual access to multiple global 

landmarks did not improve multi-level cognitive mapping performance. The larger 

numeric absolute pointing error observed in the multiple global landmark access 

condition is likely due to two reasons. First, users only needed one global landmark (the 

church) for self-localization in the current studies. Second, we realized afterward (from 

user comments) that users had difficulty in extracting each of the global landmarks from 
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the AR interface, as it was cluttered with too much information, which made it less 

effective.  

 

Figure 5.5. Mean absolute pointing error for Experiment 6. 

A repeated-measures ANOVA was conducted for each of the three dependent 

measures of wayfinding accuracy, wayfinding efficiency, and drilling accuracy, with the 

four conditions of visual access as the within-subject factor. There was no significant 

main effect of visual access on wayfinding accuracy, F(3, 189) = .539, p > .05, 2 = .014; 

or wayfinding efficiency, F(3, 189) = .550, p > .05, 2 = .009. These results are 

consistent with Experiments 4-5. This lack of an effect is likely due to the environments 

tested, e.g. all buildings in the current studies had congruent floor layouts without any 

loops and each building consisted of only one elevator. As a result, navigators could find 
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the target room using the shortest path based on accessing two accurate single-floor 

cognitive maps or even from route knowledge formed during the learning phase. In a 

previous study, we investigated how the realism of a virtual environment model impacts 

human wayfinding in a multi-level building (Giudice & Li, 2012). The virtual multi-level 

building in that study had two elevators and the results showed that a sparsely rendered 

model significantly promoted users’ wayfinding accuracy and efficiency. Thus, we 

predict that the X-ray visualization used in Experiment 6 could also promote users’ 

wayfinding performance in a complex building with multiple elevators, which will be the 

topic of a future experiment. 

A significant main effect of visual access was observed for the drilling task, F(3, 

189) = 5.548, p < .001, 2 = .081. Subsequent Dunn–Sidak pairwise comparisons showed 

that drilling accuracy in the X-ray visualization (single global landmark access condition) 

was significantly higher than the no visual access condition (p < .001) and the 

window-access condition (p < .05). This is not surprising for the no visual access 

condition but very meaningful for the window-access condition. 
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Figure 5.6. Mean drilling accuracy for Experiment 6. 

The finding that the X-ray visualization outperformed the window-access 

condition in promoting users’ drilling accuracy suggests that this interface is more than an 

adequate substitute for the gold standard of windows. Instead, it provided more clear 

inter-floor visualization than is possible from windows. We interpret this superior 

pointing and drilling performance as providing evidence that the X-ray visualization 

affords even better visual access in the multi-level built environment than is possible 

from observation through the building’s windows. Taken together, the results of 

Experiment 6 provided compelling evidence that the X-ray visualization is an effective 

approach for promoting users’ development of a multi-level cognitive map.  
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Table 5.2. Mean absolute pointing error, pointing latency, wayfinding accuracy, 

wayfinding efficiency, and drilling accuracy in Experiment 6. 

Dependent 

Variables 

Pointing 

target type 

Visual access 

No visual  

access  

X-ray 

visualization 

to a single 

global 

landmark 

X-ray 

visualization to 

multiple global 

landmarks 

Two-floor 

visual access 

Absolute 

pointing 

error 

Global 

landmark 42.51 (6.06) 13.83 (1.65) 27.69 (4.82) 12.26 (2.15) 

 
Parking lot 

37.42 (5.19) 18.52 (2.07) 26.55 (3.91) 20.98 (3.50) 

 
Building 

rooms 
33.11 (4.98) 23.63 (4.21) 23.45 (4.60) 22.59 (3.51) 

Pointing 

latency 

Global 

landmark  
6.56 (0.44) 5.86 (1.08) 6.18 (0.77) 5.07 (0.65) 

 
Parking lot 

8.46 (1.42) 8.42 (1.18) 7.59 (1.05) 6.37 (0.50) 

 
Building 

rooms 
10.49 (1.23) 11.75 (1.64) 9.37 (1.09) 10.36 (1.20) 

Wayfinding 

accuracy 
 57.8% (6.2%) 65.6% (6.0%) 59.4% (6.2%) 56.3% (6.3%) 

Wayfinding 

efficiency 
 55.1% (6.1%) 63.6% (5.9%) 56.2% (5.9%) 56.8% (6.0%) 

Drilling 

accuracy 
 62.5% (6.1%) 89.1% (3.9%) 81.3% (4.9%) 73.4% (5.6%) 
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5.3.4 Discussion 

On the basis of the findings of Experiments 4-5, we proposed and evaluated a 

third AR interface in Experiment 6 (an X-ray visualization technique), compared to two 

control conditions. The most important finding from Experiment 6 is that the X-ray 

visualization condition outperformed the “gold standard” of window-access in promoting 

users’ development of multi-level cognitive maps, by helping synthesize information 

across the global landmark and building locations. This finding suggests that increasing 

visual access with AR techniques is not merely an alternative and economical approach, 

but a more effective way for overcoming the disadvantage of limited visual access in 

built environments and improving the development of a multi-level cognitive map. This 

finding has important practical significance in that the AR technology could make a local 

landmark that is not physically visible in multiple locations/levels in a building to be a 

“global” landmark and thereby provide a generalizable, broad-based solution for 

improving spatial behaviors in complex buildings.  

The findings of experiments 5-6 provide three Human-computer interaction 

principles for designing cognitively motivated visualization techniques for development 

of indoor navigation systems. First, designers should provide the depth information of the 

global landmarks on the AR interface by showing transparent walls, occluded hallways, 

and the horizon. Second, designers should keep the AR visualization uncluttered, i.e. 
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showing multiple global landmarks is not necessarily helpful. Third, designers should 

allow users to turn on/off the AR visualization. 

5.4 Experiment 7 (2D vs. 3D schematic maps) 

5.4.1 Introduction 

In Experiment 7, we proposed and evaluated two schematic map visualization 

approaches (2D map with a top-down viewpoint vs. 3D map with a bird’s-eye viewpoint) 

as shown in Figure 5.7, compared to a control condition (without map assistant). The two 

visualization approaches are different from the traditional single-floor visualization 

method in that both show multiple floors at the same time and provide users with access 

to their alignment (or misalignment) in a straight forward manner.    

 

Figure 5.7. A 2D top-down viewpoint map and a 3D bird’s-eye viewpoint. 

The first research question addressed in Experiment 7 asks whether the map view 

perspective (2D top-down view map vs. 3D bird’s-eye view map) affects the 

development of multi-level cognitive maps. Several studies have investigated the pros 

and cons of using 2D and 3D visualizations on portable mobile displays in assisting 
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navigation in both outdoor and indoor spaces (Chittaro & Venkataraman, 2006; Nurminen, 

2008; Oulasvirta, Estlander, & Nurminen, 2009). As for outdoor space, Oulasvirta et al. 

(2009) found users assisted with 2D maps were able to extract more information in less 

time and used reliable and ubiquitous environmental cues like street names and crossings 

more frequently than 3D maps; compelling empirical evidence found in their research 

showed that a 2D street map can outperform a 3D mobile map. However, the 3D map in 

their research only means a photorealistic representation of the real world (2.5D), as 

outdoor environments are only composed of a horizontal plane providing no alignment or 

connectivity information between different planes. In our study, 3D bird’s-eye view maps 

consist of multiple floors/planes and we aim to investigate whether a 3D map could 

outperform a 2D map for assisting multi-level cognitive map development in these true 

3D indoor environments.  

Chittaro & Venkataraman (2006) evaluated 2D maps vs. 3D maps for assisting 

navigation in a multi-level virtual building and the 2D map also outperformed the 3D 

interface for assisting users to find three object targets whose locations were indicated by 

the navigation aid. However, in their research, users were assisted by the maps while they 

were looking for the targets and the target locations were indicated on the maps. In our 

research, however, participants were only assisted with the maps for visualization in the 

learning phase, as this study aims to investigate whether the maps facilitated development 
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of multi-level cognitive maps that supported subsequent behavior on cross-floor tasks 

during testing. Additionally, most users only learned the 3D maps from a fixed viewpoint 

in the Chittaro & Venkataraman (2006)’s study, as only one participant made use of the 

sliders to change the map orientation. To solve this problem, in our research, the system 

automatically rotates the 3D bird’s-eye viewpoint when users pass by the targets; this 

allows users to learn the building from multiple perspectives, as shown in Figure 5.8.  

 

Figure 5.8. Rotation of the 3D bird’s-eye viewpoint. 

The second research question addressed by Experiment 7 asks how different 

landmark types (contiguous landmarks that were vertically aligned on each floor and 

non-contiguous landmarks that had no obvious alignment between floors) might affect 

performance of cross-level learning and multi-level cognitive map development. Li & 

Giudice (2012b) proposed the term “contiguous landmark” in the multi-level indoor 

environment referring to vertically aligned indoor landmarks, which consist of a set of 

vertically aligned structural or object landmarks located on different floors. For instance, 

two vertically aligned blue walls can be conceptualized as a contiguous object landmark; 
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while two vertically aligned T intersections can be conceptualized as a contiguous 

structural landmark. A constrained field of view of indoor environments causes 

navigators to have difficulties in learning cross-level visual cues of a building and thereby 

to depend more heavily on local landmarks, e.g., a picture on the wall, instead of global 

landmarks (Giudice et al., 2010). Results of Experiments 4-6 showed that access to global 

landmarks (both from windows-access and from AR visualization) can assist users’ 

ability in forming multi-level cognitive maps. The current study addresses a similar issue 

but investigates the explicit nature of these local landmarks—whether two 

vertically-aligned local landmarks could be identified and integrated by the navigator into 

a global landmark. If this works, it means contiguous landmarks can serve as “glue”—a 

common spatial reference frame—to align two floors of a building and navigators could 

use this information as a cue to consolidate local spatial knowledge learned from different 

floors into a global multi-level cognitive map. Although each part of the contiguous 

landmark is usually perceived discretely on each floor, the maps make them perceptually 

available as users can directly visualize the relation between floors and learn the 

alignment without the normal spatiotemporal constraints and other limitations that 

usually limit access to cross-floor information integration. Therefore, we propose that 

contiguous landmarks could help multi-level cognitive map development, as, in principle, 
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they provide a common frame of reference to consolidate the individual floor knowledge 

into a consistent building-level mental framework.  

5.4.2 Methods 

Eighteen participants (9 females and 9 males, M=25.8, SD=7.4) were recruited 

from the University of Maine.  

A Lenovo W510 Thinkpad 15.6-inch workstation notebook with an Intel Core i7 

processor and NVIDIA Quadro FX 880M graphics was used. A Logitech Extreme 3D Pro 

Joystick was used to perform both translational and rotational movements. As shown in 

Figure 5.9, our environments were comprised of three two-level virtual buildings which 

were designed using Revit Architecture 2013 (AutoDesk, Inc.). The Unity 4.0 VR engine 

(Unity Technologies) was used as the VE platform supporting users’ real-time navigation 

and recording their trajectory and test performance. 

 

Figure 5.9. Virtual Environments of Experiment 7. 

All three buildings had the same number of corridors and intersections, meaning 

the layout topology and complexity of all buildings was identical. As shown in Figure 
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5.10, the solid and dashed line respectively represents the first and the second floor layout. 

Two vertically aligned T-intersections were used to represent a contiguous structural 

landmark, while two vertically aligned chandeliers were used to represent contiguous 

object landmarks. In addition, two non-contiguous single-floor landmarks (an 

L-intersection and a doorway) were used in each virtual building.  

 

Figure 5.10. Floor layouts of Experiment 7.  represents target A located at a contiguous 

object landmark;  represents target B located at a contiguous structural landmark;  

represents target C located at a doorway;  represents target D located at an L 

intersection. 

The start learning point was located at the southeast corner of the building. There 

was a red arrow in the virtual building indicating the start point and the north direction. 

The two floors were connected by two staircases. There were two pictures on each floor 

which served as experimental targets. Pictures were based on four high imagery words: 

chair, table, bottle and clock. The four targets were located at two types of landmarks as 

shown in Figure 5.10. The targets were initially hidden from view but when participants 
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passed the target, an audio signal was triggered that gave its name. The target also 

visually appeared for ten seconds and then faded out.   

A within-subject design was adopted, with eighteen participants running in three 

levels of visualization method (2D top-down view map, 3D bird’s-eye view map, and a 

third unaided control condition). Participants first freely learned a multi-level building 

and then took part in four spatial tasks: pointing, wayfinding, vertical navigation task, and 

paper-based drilling task (as described in the general experimental procedure in Section 

3.3). Finally, participants took part in a user preference survey. 

5.4.3 Results 

A 3 (visualization method: two map viewpoints and a third no map assistant) × 2 

(landmark type: contiguous vs. non-contiguous) repeated-measures ANOVA was 

conducted for each of the six dependent measures (absolute pointing error, pointing 

latency, wayfinding accuracy, wayfinding efficiency, vertical navigation accuracy and 

paper-based drilling accuracy). Significant main effects of visualization method were 

observed for absolute pointing error, vertical navigation accuracy and paper-based 

drilling accuracy: absolute pointing error, F(2, 34) = 42.483, p < .001; vertical navigation 

accuracy, F(2, 34) = 3.433, p < .01; paper-based drilling accuracy, F(2, 34) = 8.859, p 

< .01. Subsequent Dunn–Sidak pairwise comparisons showed that pointing and vertical 



 

151 

 

   

navigation in the 2D map and 3D map conditions were more accurate than in the control 

condition (no map assistance) and paper-based drilling accuracy in the 2D map condition 

was more accurate than both the 3D map condition and the control condition (all ps 

< .01).  

 

Figure 5.11. Mean absolute pointing error for Experiment 7. 

No effects of landmark type were observed for any measure (all ps > .10). 

However, there was a significant interaction between visualization method and landmark 

type on the paper-based drilling accuracy, F(2, 34) =3.923, p < .05. Subsequent Dunn–

Sidak pairwise comparisons indicated that users were more accurate at finding targets at 

contiguous landmarks in the 2D top-down view map condition than in the 3D bird’s-eye 

view map condition (p < .05). 
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Table 5.3. Mean absolute pointing error, pointing latency, vertical wayfinding accuracy, 

and paper-based drilling accuracy in Experiment 7. 

5.4.4 Discussion 

The primary goal of Experiment 7 was to investigate whether use of either 2D 

top-down view maps or 3D bird’s-eye view maps, compared to no map assistant, 

significantly improved the development of multi-level cognitive maps. As expected, the 

reliably better performance on the cross-level spatial tasks with visualization assistance, 

compared to the control condition, provides evidence of the efficacy of these 

Dependent 

Variables 

(Measures) 

Landmark type  

Visualization method 

2D map with a 

top-down viewpoint  

3D map with a 

bird’s-eye 

viewpoint 

Without map 

assistant 

Absolute 

pointing error 
Contiguous 70.79 (12.28) 59.89 (8.16) 92.67 (11.68) 

 Non-contiguous 63.29 (7.92) 64.92 (7.85) 82.50 (7.35) 

Pointing latency Contiguous 11.49 (1.40) 15.58 (2.68) 14.03 (1.46) 

 Non-contiguous 12.70 (1.58) 15.80 (2.45) 11.87 (1.18) 

Vertical 

Wayfinding 

accuracy 

Contiguous 41.7% (7.3%) 44.4% (6.9%) 27.8% (7.3%) 

Non-contiguous 38.9% (8.6%) 41.7% (7.3%) 25.0% (7.3%) 

Paper-based 

Drilling 

accuracy 

Contiguous 30.6% (10.0%) 8.3% (4.5%) 11.1% (5.0%) 

Non-contiguous 19.4% (5.9%) 13.9% (5.4%) 8.3% (4.5%) 
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visualization techniques for promoting the development of multilevel cognitive maps. 

However, no significant differences were found in the pointing and vertical navigation 

tasks between the two maps (2D top-down view map vs. 3D bird’s-eye view map), which 

is inconsistent with previous research regarding the evaluation of the 2D and 3D maps 

(Chittaro & Venkataraman, 2006; Oulasvirta et al., 2009). One possible explanation is 

that the 3D map used in our research is a true 3D structural rendering rather than a 

photorealistic representation of the world (Oulasvirta et al., 2009). In addition, users 

could learn the 3D internal structure of the buildings from multiple perspectives, which is 

known to be helpful for understanding the internal structure of the object compared to 

learning from a fixed bird’s-eye view (Cohen & Hegarty, 2007), in which, the relative 

direction and distance between targets can be distorted due to 3D perspective cues. 

Therefore, the performance gap found between 2D and 3D maps in the previous literature 

was likely narrowed here, as we made full use of the utility of 3D maps, e.g., by 

providing multiple perspectives.  

Nevertheless, use of 2D maps outperformed 3D maps in the paper-based drilling 

task, which is an important task to test the development of multi-level cognitive maps 

(see Sections 2.3 and 3.3). The statistics showed that users had significantly better 

performance in indicating these targets at contiguous landmarks in the 2D top-down view 

map condition than the 3D bird’s-eye view map condition. This suggests that the 2D 
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maps are a better visualization method for allowing participants to learn the 

between-floor alignment, which means that they can develop more accurate multi-level 

cognitive maps supporting behaviors that require cross-floor spatial knowledge. The 2D 

top-down view map condition consistently outperformed the without map assistant 

condition in all three tasks. Corroborating the statistical advantage observed for the 2D 

maps, fourteen participants indicated that they preferred the 2D top-down view map, 

whereas only four selected the 3D bird’s-eye view map as their favorite. No participant 

chose the without map assistant condition. Some examples of the positive comments 

include: “the 2D map made the locations easier to see or point out”, “2D map is easier to 

get a sense of the floor layouts in relation to each other. The 3D map was hard to read and 

learn”, “2D map gives me a better idea of vertical navigation and relation of objects”. 

Taken together, these results provide evidence that the 2D top-down view map is a more 

user-friendly visual interface for assisting multi-level cognitive map development than 

the 3D map. This preference is not surprising; 2D maps have been used for hundreds, if 

not thousands, of years. Metro maps, which are very similar to the 2D top-down view 

maps in this study, are products of decades of research and development.  

As for the analysis of contiguous landmarks vs. non-contiguous landmarks 

analysis, there were no significant differences observed in the pointing and vertical 

navigation tasks, but there was a significant difference found in the paper-based drilling 
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task. In this study, users received map assistance in the learning phase only and we did 

not explicitly highlight any contiguous landmarks on either the 2D maps or 3D maps. In 

addition, users were not informed of any clues about the contiguous landmark 

information before the experiment. Even with this lack of knowledge, some participants 

still perceived and made use of these contiguous landmarks for between floor wayfinding, 

which supports the importance of visualization techniques that highlight and emphasize 

these cues. Therefore, in the future, we will further investigate whether explicitly 

highlighting the contiguous landmarks on the maps improve learning of multi-level 

buildings and subsequent development of multi-level cognitive maps. The findings will 

provide important guidelines for the design of cognitively motivated visualization 

techniques for use in the development of indoor navigation systems. 

The pointing error and wayfinding accuracy observed in this study are lower than 

expected even when assisted with the maps for visualization. There are two reasons that 

we think likely account for this outcome. First, the virtual buildings used in this study 

have much higher structural complexity for transition between floors than were used in 

previous research (Richardson et al., 1999). The virtual buildings used in our study have 

incongruent floor layouts and disorienting staircases, which consist of both horizontal and 

angular offsets between the floors. Second, the virtual buildings were designed with very 

low architectural differentiation, which has been discussed as another main cause of 
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getting lost in indoor spaces (Carlson et al., 2010). Even in such a complex indoor 

environment, participants showed reliably better performance in the two map conditions 

than the without map assistant control condition, meaning that the proposed two 

visualization methods are efficient tools in facilitating multi-level cognitive map 

development. 

5.5 Summary 

In Chapter 5, we described three experiments (Experiments 5-7) using VEs to 

evaluate several indoor visualization interfaces, including AR visualizations and 

schematic maps, for assisting the development of multi-level cognitive maps.  

Experiments 5-6 were conducted to evaluate Hypothesis 4: we can use AR 

technology to increase visual access to global landmarks, which could facilitate users’ 

development of multi-level cognitive maps. Hypothesis 4 was validated, as results of 

Experiment 6 demonstrated that increasing visual access with the X-ray visualization 

condition is a more effective approach for overcoming the disadvantage of limited visual 

access in built environments and improving the development of a multi-level cognitive 

map. Although the results of Experiment 5 showed that the two simply rendered AR 

models were not effective for facilitating multi-level cognitive map development, the 

findings provide guidelines for the design of AR-based visualization techniques for use in 
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the development of indoor navigation systems. Experiment 7 was conducted to evaluate 

Hypothesis 5: schematic maps that effectively convey the desired multi-level building 

information to users could alleviate the challenge of integrating cross-level spatial 

knowledge. The outcome of Experiment 7 supports Hypothesis 5, since participants had 

reliably better performance on the cross-level spatial tasks with both maps (2D top-down 

view map and 3D bird’s-eye view map) compared to the no-map condition, suggesting 

that these visualization techniques could promote the development of multilevel cognitive 

maps. In sum, the proposed visualization interfaces in this thesis are efficient tools in 

facilitating multi-level cognitive map development. These findings contribute to the 

growing field of indoor navigation and provided valuable insights to the real-time indoor 

navigation systems.   
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK  

6.1 Summary of Contributions 

“Space plays a role in all our behavior. We live in it, move through it, explore it, 

defend it” (O’Keefe & Nadel, 1978). From traveling to school, to driving to work, to 

flying long distances for vocation, our daily lives involve a myriad of spatial behaviors. 

This dissertation deals with a special type of space, multi-level buildings, and it addresses 

a long-standing and ubiquitous problem faced by anyone who navigates indoors—why do 

people get lost inside multi-level buildings? To investigate this vexing issue, a 

two-pronged approach was employed combining theories and paradigms from both basic 

and applied research. This section details the motivation and key findings that came out 

of my doctoral thesis work. 

6.1.1 Contributions Related to Theories of Spatial Cognition  

Of theoretical interest, I investigated how multi-level built environments are 

learned and structured in memory. The most important contribution of this dissertation is 

the extension of the traditional concept of cognitive maps to multi-level built 

environments, termed here as multi-level cognitive maps. The concept of multi-level 

cognitive maps plays an important role in understanding how humans learn and represent 
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multi-level built environments. On the basis of previous behavioural and neurobiological 

literature regarding human mental representations of 3D space, especially in multi-level 

built environments, I developed the notion of a multi-level cognitive map, defined as a 

“multi-layer” structure, consisting of: (1) a set of super-imposed 2D cognitive maps, (2) 

between-floor connectivity information, (3) between-floor alignment information, and (4) 

encoding of the between-floor z-axis offset. The concept of a multi-level cognitive map is 

distinguished from a true 3D mental representation (Yartsev & Ulanovsky, 2013), as the 

vertical axis of a multi-level cognitive map is not encoded with the same representational 

structure and fidelity as the horizontal plane. The concept of multi-level cognitive maps is 

similar to the bicoded three-dimensional spatial encoding model (Jeffery et al., 2013), as 

both consist of a set of locally planar 2D cognitive maps. However, I studied an important 

extension of the bicoded theory—how navigators integrate cross-floor spatial knowledge 

during vertical travel. Compelling empirical evidence was found showing that it is very 

challenging and error-prone for humans to integrate cross-level spatial knowledge during 

vertical travel, supporting the theory that people are developing and accessing a bicoded 

spatial representation rather than a true 3D mental representation. My thesis work 

contributes important empirical data that advances theories of spatial cognition regarding 

human spatial learning and mental representations of 3D space.  
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The findings from nine behavioral experiments validated the framework of 

multi-level cognitive map development, providing important insights into how humans 

build a globally coherent mental representation of multi-level buildings.  

1) In Experiments 1-3, I successfully disentangled relevant between-floor 

topological and structural factors that might cause difficulty forming multi-level 

cognitive maps. Previous studies have suggested that the between-floor z-axis offset is 

attributable to the challenge people experience in forming a globally coherent mental 

representation of multi-level buildings, which I posited as being too simplistic an 

explanation. In support of my claim, results of Experiments 1 and revealed that it is not 

the presence of the z-axis offset alone but the combination of the between-floor overlap 

and the z-axis offset that causes the difficulty of integrating cross-level spatial knowledge. 

Results of Experiment 2 showed that when two floors of a multi-level building are 

incongruent and misaligned (i.e., the reference directions of the two floors have an 

angular offset), it is more difficult for people to build a globally coherent mental 

representation of this building. Results of Experiments 1 and 3 further demonstrated that 

people perform better in buildings with floors that are aligned and users’ ability to form 

multi-level cognitive maps was not adversely effected or reliably impaired in these 

environments, even when the orientation of the elevator had an angular offset with 

respect to the floor’s reference direction. These results suggest that if two floors of a 



 

161 

 

   

building are aligned and share a common spatial reference frame, navigators can use 

interior features such as walls or hallways to learn the building structure and grasp the 

congruent frame of reference between floors. These findings are important for providing 

new insights into the fundamental spatial cognition question of why it is challenging to 

integrate cross-level spatial knowledge. More importantly, these findings are specific and 

concrete enough to provide design guidelines for architects and building planners, which 

are discussed in the following section. 

2) Results of Experiment 4 demonstrated that if a multi-level building affords 

visual access to a global landmark, navigators can use this global landmark to accurately 

integrate cross-level spatial knowledge. In addition, if the global landmark is visible from 

both indoor and outdoor space (O/I-space), it can facilitate the integration of O/I spaces, 

which is a longstanding challenge discussed in the spatial cognition literature (Giudice et 

al., 2010). Previous literature has found that global landmarks serving as fixed global 

spatial references assist navigators when outdoors to integrate local spatial knowledge 

into a global cognitive map. Findings from Experiment 4 are consistent with this previous 

research but extend the advantage of accessing global landmarks from single-plane 2D 

spaces into multi-level built environments. These new results provide important empirical 

evidence for guiding future spatial cognition research investigating the role of landmarks 

serving as fixed global spatial references in 3D settings.  
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3) Despite the clear advantage demonstrated in this dissertation for accessing 

global landmarks from within buildings, they are often not available in multi-level indoor 

environments, and it is impractical to modify the physical building to provide this access. 

However, results of Experiment 5-7 showed that new visualization interfaces can 

facilitate the integration of cross-level spatial knowledge. For instance, two approaches 

that were developed and evaluated here and that led to reliably improved spatial 

performance included augmented reality (AR) visualizations and schematic maps that 

effectively convey the desired multi-level building information (e.g., global landmarks, 

floor layouts). Specifically, results of Experiment 6 demonstrated compelling evidence 

that increasing visual access using an X-ray AR visualization that showed transparent 

walls, occluded hallways, and the horizon, outperformed the “gold standard” of 

window-access in promoting users’ development of multi-level cognitive maps. 

Establishing new and improved visualization techniques are important for spatial 

cognition research. My thesis research is one of only a few studies investigating the effect 

of visualization techniques on users’ ability to learn, represent, and behave in multi-level 

buildings, providing important empirical foundations for future spatial cognition research 

in this domain.    
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6.1.2 Contributions Related to Applications and Design 

In the previous section, I discussed the findings from Experiments 1-7 

contributing to theories in the domain of spatial cognition such as improving our 

understanding of how a globally coherent mental representation of multi-level buildings 

is developed to represent and support spatial behaviors in these multi-level environments. 

In this section, I will describe how the outcomes of my thesis work also significantly 

contribute to related real-world applications, such as architectural design and the 

development of cognitively motivated spatial visualizations. 

The outcomes of Experiments 1-4 provided four evidence-based design guidelines 

for architects. 

1) Results of Experiments 1 and 2 revealed that it is not the presence of the z-axis 

offset alone but the combination of the between-floor overlap and the z-axis offset that 

causes the difficulty of integrating cross-level spatial knowledge.  

Guideline 1: based on this knowledge, designers should subdivide each floor of a 

complex multi-level building into sub-regions, so that sub-regions of two floors are 

non-overlapped, and thus, the entire building is easier for users to learn and build a 

multi-level cognitive map. My thesis work only focused on two-floor buildings. However, 

this logic would hold for more complex multi-level environments (see discussion in 

Section 6.2.1). 
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2) Results of Experiment 2 showed that when two floors of a multi-level building 

are misaligned, it is very challenging and error-prone for people to build accurate 

multi-level cognitive maps.  

Guideline 2: architects should avoid designing buildings with between-floor 

misalignment, which was found to be a significant cause of people becoming disoriented 

or lost.  

3) Previous studies have suggested that confusing staircases with confusing 

between floor heading shifts often cause people to get disoriented during indoor 

navigation. However, results of Experiments 1 and 3 demonstrated that the between-floor 

heading shift and the portal-floor heading shift did not significantly impair users’ ability 

to form multi-level cognitive maps in aligned buildings. These findings indicate that 

between-floor alignment is an important factor helping navigators to ‘glue’ or integrate 

spatial properties and can even help offset the potential difficulty imposed by confusing 

between floor heading shifts. In addition, results of Experiment 4 showed that global 

landmarks can serve as a fixed spatial reference frame for navigators to integrate 

multi-level spatial knowledge into a multi-level cognitive map.  

Guideline 3: if confusing staircases or elevators with misaligned portals are 

necessary in a building for aesthetic consideration or other reasons, designers should 

ensure that navigators can easily learn between-floor alignment by providing external 
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cues such as a common between-floor axis (aligned buildings) or situating the 

staircase/elevator in an open area such as an atrium (providing visual access to global 

landmarks).  

4) Results of Experiment 4 showed that if a global landmark is visible from both 

indoor and outdoor space, it will facilitate both cross-level spatial knowledge integration 

and the integration of outdoor and indoor spaces (OI-spaces) into multi-level cognitive 

maps.  

Guideline 4: architects should design buildings with good visual access between 

indoor and outdoor spaces to help navigators to effectively transit between O/I spaces. 

In addition, this thesis work contributes to the growing field of real-time indoor 

navigation systems and provides new insight into the optimal visualization interfaces to 

be employed in these systems in order to support the most accurate and intuitive spatial 

learning and behavior in complex buildings. The findings of Experiments 5-7 provided 

four HCI principles for cognitively motivated visualization techniques for development 

of indoor navigation systems. 

1) In Experiment 5, I proposed and evaluated two simply rendered AR models (an 

icon-model and a wireframe-model), which require fewer computational resources to 

render compared to other visualization techniques. Results showed that the two AR 

models, although computationally resource-efficient, were not effective for facilitating 
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multi-level cognitive map development. There is a trade-off between information access 

and resource efficiency. It makes no sense to design resource efficient visualization 

techniques that don’t actually facilitate the underlying mental representational process. In 

Experiment 6, I found compelling evidence that increasing visual access using a solution 

based on an X-ray AR visualization outperformed the “gold standard” of window-access 

in promoting users’ development of multi-level cognitive maps. Taken together, these 

findings provide three important guidelines that can be used for the design and 

implementation of real-time AR-based visualization techniques for use in the 

development of indoor navigation systems.  

HCI principle 1: designers should provide information about visual depth of the 

global landmarks depicted on the AR interface by showing transparent walls, occluded 

hallways, and the horizon.  

HCI principle 2: designers should keep the AR visualization clear and uncluttered 

(less is more). For example, showing multiple global landmarks on the AR visualization 

is not necessarily helpful in assisting users to build more accurate multi-level cognitive 

maps than simply showing one well-chosen global reference.  

2) In Experiment 5, users were constantly exposed to the AR information through 

an always-on interface, which sometimes distracted users from learning the building itself 

(based on users’ comments). Thus, it is important to let users control the on/off of the AR 
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visualization, e.g. deciding on when they want assistance from presence of the AR 

visualization. 

HCI principle 3, designers should allow users to turn on/off the AR visualization 

on-demand, rather than adopting an always-on interface. 

3) Results of Experiment 7 indicate that both the 2D top-down view map and the 

3D bird’s-eye view map can promote users’ ability to form multilevel cognitive maps. 

However, the 2D top-down view map was found to be a more effective visualization 

method for allowing participants to learn the between-floor alignment, which as 

described earlier, was found in my studies to be a critical factor improving between-floor 

spatial performance and the development of multi-level cognitive maps.  

HCI principle 4: designers should use a 2D top-down view map instead of a 3D 

bird’s-eye view map to best assist users with accurate real-time indoor navigation. 

6.2 Future Work 

6.2.1 Extending the Concept of Multi-Level Cognitive Maps to More Complex 

Multi-level Built Environments 

The concept of multi-level cognitive maps will be expanded in future studies 

based on the following four components. 

First, in the real world, a complex multi-level building often comprises many 
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aboveground floors and underground levels. If multiple floors of a building have the 

same (or similar) layouts, these floors might be mentally represented as one level in the 

multi-level cognitive map. In reality, each floor of a complex multi-level building usually 

comprises more complex floor layouts than the buildings evaluated in this thesis. Thus, 

each floor of these buildings might be encoded in multiple regions. The regions of 

multi-level built environments are likely to be mentally grouped together in 

psychological space and will thus form superordinate nodes in the multi-level cognitive 

map. Thus, we postulate that a multi-level cognitive map is not only a “multi-layered” 

structure but also a regionalized hierarchical structure, meaning that both horizontal and 

vertical regions could be grouped together and form superordinate nodes in the 

multi-level cognitive map. The processes involved in mentally representing multiple 

regions of a complex building in the formation of a multi-level cognitive map will be 

further investigated in future studies and the findings will be used to enhance the concept 

of multi-level cognitive maps as advanced in this dissertation. 

Second, complex multi-level buildings often contain multiple vertical connectors 

(e.g., elevators, staircases, escalators). A greater quantity of vertical connectors creates a 

more complex between-floor connectivity matrix, meaning that it is more challenging to 

determine the shortest path between positions located on two floors. In addition, using 

different types of vertical connectors for vertical transitions might affect the development 
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of multi-level cognitive maps. For instance, a horizontal transition shift is often involved 

in the vertical transition via an escalator but not an elevator in most cases. These issues 

will be important research topics for future studies, and the findings from this research 

will be used to refine the concept of multi-level cognitive maps on between-floor 

connectivity information. 

Third, investigating the encoding and distortion of the z-axis (vertical dimension) 

will be a research topic for a future project. Previous literature has found that humans can 

roughly estimate distance between floors, but the estimations are distorted with “relative 

downward errors in upward judgments and relative upward errors in downward 

judgments” (Jeffery et al., 2013; Tlauka et al., 2007; Wilson et al., 2004). However, in the 

studies by both Tlauka et al. (2007) and Wilson et al. (2004), each floor of the three-level 

virtual building contained only one room (vista space). It is necessary to investigate how 

the encoding of the vertical dimension is distorted in a more complex multi-level building 

with each floor containing multiple rooms and hallways. These issues will be addressed 

in future studies, and we will use the findings from these studies to refine the concept of 

multi-level cognitive maps described in this thesis on the encoding of the z-axis. 

Fourth, the work described in this thesis is primarily concerned with 

“point-to-point” vertical alignment. For instance, in the drilling task, the experimenter 

asked participants to indicate which object or landmark is directly above/below their 
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current location. Even if the object or landmark is a room, it is perceived and 

conceptualized as a point or position rather than an area or a region. The reason for use of 

this experimental design is that the “point-to-point” vertical alignment information is the 

foundation of the “region-to-region” vertical alignment information. We argue that if 

users have learned accurate “point-to-point” vertical alignment between floors, they can 

use this information to infer the “region-to-region” vertical alignment—which region (or 

regions) are directly above/below their current located region. These issues will be 

important research topics for future studies to refine the concept of multi-level cognitive 

maps in regard to between-floor alignment information.  

We will use the empirical findings described above to develop a more formal 

characterization of the concept of multi-level cognitive maps. Hillier and colleagues have 

developed a methodology of space syntax to characterize spatial configuration by 

describing and analyzing patterns of architectural space at both the building and urban 

level (Hillier & Hanson, 1984). However, space syntax focuses on the connectivity of 

single-plane layouts and assigns no special significance to the vertical or 3D qualities of 

places (Montello, 2007). Evaluating the impact of refined parameters of environmental 

factors on the development of multi-level cognitive maps may contribute new insights to 

the space syntax theory by extending it to multi-level indoor spaces. These issues will be 

addressed in future projects.  
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6.2.2 Combining AR Visualizations and Schematic Maps to Assist the Development 

of Multi-level Cognitive Maps 

In this thesis, we evaluated two types of visualization interfaces (AR 

visualizations and schematic maps) for assisting the development of multi-level cognitive 

maps, as described in Section 2.2.3. Although both types of visualization interfaces were 

found to facilitate the development of multi-level cognitive maps, the difference between 

the effects of these visualization interfaces were not directly investigated in this thesis 

and will be addressed in a future study. In a previous study, we proposed that an 

important design principle of cognitively motivated visualization techniques for indoor 

navigation systems is to flexibly combine the advantages of different types of visual 

interfaces based on users’ wayfinding demands. The visual interface we conceptualized 

was termed the “details-on-demand” visual interface (Li & Giudice, 2012a). The 

wayfinding demands were categorized according to the user requirements encapsulated in 

the five navigation phases, as illustrated in Table 6.1. 



 

172 

 

   

Table 6.1. Five levels of wayfinding demands for transition between O/I spaces. 

Navigation phases Spaces Wayfinding demands 

Plan to enter a building O Overview of the building 

Enter a building 

 

O/I  

 

Learn main floor layout and important 

environmental features such as elevators 

Navigation on one floor I Learn current floor layout 

Navigation between floors I Integrating vertical information 

Plan to exit a building I/O Overview of the spatial references of O/I 

The details-on-demand visual interface for facilitating the development of 

multi-level cognitive maps and the integration between OI-spaces will be further 

investigated in future research.   
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Kant, I., Müller, F. M., & Noiré, L. (1881). Immanuel kant’s critique of pure reason. 

London, UK: Macmillan. 

Kelly, J. W., & Mcnamara, T. P. (2008). Spatial memories of virtual environments: How 

egocentric experience, intrinsic structure, and extrinsic structure interact. 

Psychonomic Bulletin & Review, 15(2), 322–327. 

Kim, K., Rosenthal, M. Z., Zielinski, D., & Brady, R. (2012). Comparison of desktop, 



 

177 

 

   

head mounted display, and six wall fully immersive systems using a stressful task. 

2012 IEEE Virtual Reality (VR), 143–144. 

Kitchin, R., & Blades, M. (2002). The cognition of geographic space (Vol. 4). IB Tauris. 

Klatzky, R. L., Beall, A., & Loomis, J. M. (1999). Human navigation ability: Tests of the 

encoding-error model of path integration. Spatial Cognition and Computation, 1, 

31–65. 

Klatzky, R. L., & Giudice, N. A. (2013). The planar mosaic fails to account for spatially 

directed action. Behavioral and Brain Sciences, 36(05), 554–555. 

Klatzky, R. L., Loomis, J. M., & Golledge, R. G. (1997). Encoding spatial representations 

through nonvisually guided locomotion: Tests of human path integration. 

Psychology of Learning and Motivation, 37, 41–84. 

Klippel, A., Hirtle, S., & Davies, C. (2010). You-Are-Here Maps: Creating Spatial 

Awareness through Map-like Representations. Spatial Cognition & Computation, 

10(2-3), 83–93. 

Klippel, A., Richter, K., Barkowsky, T., & Freksa, C. (2005). The cognitive reality of 

schematic maps. In L. Meng, A. Zipf, & T. Reichenbacher (Eds.), Map-based 

Mobile Services-Theories, Methods and Implementations (pp. 57–74). Berlin: 

Springer. 

Lau, R. W. H., Li, F., Kunii, T. L., Guo, B., Zhang, B., Magnenat-Thalmann, Nadia 

Kshirsagar, Sumedha Thalmann, D., & Gutierrez, M. (2003). Emerging web 

graphics standards and technologies. Computer Graphics and Applications, IEEE, 

23(1), 66–75. 

Levine, M., Jankovic, I. N., & Palij, M. (1982). Principles of spatial problem solving. 

Journal of Experimental Psychology: General, 111(2), 157. 

Li, H., & Giudice, N. A. (2012a). Details-on-demand Mobile Visual Interface for 

Facilitating Indoor Wayfinding. In extended abstract at the conference of GIScience 

2012. 



 

178 

 

   

Li, H., & Giudice, N. A. (2012b). Using Mobile 3D Visualization Techniques to Facilitate 

Multi-level Cognitive Map Development of Complex Indoor Spaces. In C. Graf, N. 

A. Giudice, & Schmid，F. (Eds.), Proceedings of the International Workshop on 

Spatial Knowledge Acquisition with Limited Information Displays (SKALID’) (pp. 

31–36). Monastery Seeon, Germany. 

Li, H., & Giudice, N. A. (2013). The Effects of 2D and 3D Maps on Learning Virtual 

Multi-level Indoor Environments. In Proceedings of the 1st ACM SIGSPATIAL 

International Workshop on Map Interaction (pp. 7–12). Orlando, FL, USA: ACM. 

Loomis, J. M., Blascovich, J. J., & Beall,  a C. (1999). Immersive virtual environment 

technology as a basic research tool in psychology. Behavior Research Methods, 

Instruments, & Computers, 31(4), 557–64. 

Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. 

a. (1993a). Nonvisual navigation by blind and sighted: assessment of path 

integration ability. Journal of Experimental Psychology. General, 122(1), 73–91. 

Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. 

A. (1993b). Nonvisual navigation by blind and sighted: assessment of path 

integration ability. Journal of Experimental Psychology. General, 122(1), 73–91. 

Loomis, J. M., Klatzky, R. L., Golledge, R. G., & Philbeck, J. W. (1999). Human 

navigation by path integration. Wayfinding Behavior: Cognitive Mapping and Other 

Spatial Processes, 125–151. 

Lynch, K. (1960). The Image of the City. MIT Press. 

MacEachren, A. (1992). Application of environmental learning theory to spatial 

knowledge acquisition from maps. Annals of the Association of American 

Geographers, 82(2), 245–274. 

Mark, D. M., Freksa, C., Hirtle, S. C., Lloyd, R., & Tversky, B. (1999). Cognitive models 

of geographical space. International Journal of Geographical Information Science, 

13(8), 747–774. 



 

179 

 

   

McNamara, T. P., Sluzenski, J., & Rump, B. (2008). Human spatial memory and 

navigation. In H. L. Roediger (Ed.), Learning and memory: A compre- hensive 

reference: Vol. 2. Cognitive psychology of memory (Vol. 2, pp. 157–178). Oxford: 

Elsevier. 

Meilinger, T. (2008). The network of reference frames theory: A synthesis of graphs and 

cognitive maps. In Lecture Notes in Computer Science (including subseries Lecture 

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 5248 

LNAI, pp. 344–360). Freiburg, Germany. 

Meilinger, T., Riecke, B. E., & Bülthoff, H. H. (2013). Local and global reference frames 

for environmental spaces. Quarterly Journal of Experimental Psychology, 67(3), 

542–69. 

Montello, D. R. (1993). Scale and multiple psychologies of space. In Spatial information 

theory: a theoretical basis for GIS (pp. 312–321). Springer. 

Montello, D. R. (1998). A new framework for understanding the acquisition of spatial 

knowledge in large-scale environments. In M. J. Egenhofer & R. G. Golledge (Eds.), 

Spatial and temporal reasoning in geographic information systems (pp. 143–154). 

New York: Oxford University Press. 

Montello, D. R. (2007). The contribution of space syntax to a comprehensive theory of 

environmental psychology. 76th International Space Syntax Symposium Instanbul 

2007, 1–12. 

Montello, D. R., & Freundschuh, S. (2005). Cognition of Geographic Information. In 

McMaster R. B. & E. L. Usery (Eds.), A research agenda for geographic 

information science (pp. 61–91). Boca Raton, FL: CRC Press. 

Montello, D. R., & Pick, H. L. (1993). Integrating Knowledge of Vertically Aligned 

Large-Scale Spaces. Environment and Behavior, 25(3), 457–484. 

Moratz, R., & Ragni, M. (2008). Qualitative spatial reasoning about relative point 

position. Journal of Visual Languages and Computing, 19(1), 75–98. 



 

180 

 

   

Moratz, R., & Wallgrün, J. O. (2012). Spatial reasoning with augmented points: 

Extending cardinal directions with local distances. Journal of Spatial Information 

Science, 5(5), 1–30. 

Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place cells, grid cells, and the brain’s 

spatial representation system. Annual Review of Neuroscience, 31, 69–89. 

Mou, W., McNamara, T. P., & Valiquette, C. M. (2004). Allocentric and Egocentric 

Updating of Spatial Memories. Cognition, 30(1), 142–157. 

Nadel, L. (1991). The hippocampus and space revisited. Hippocampus, 1(3), 221–9. 

Newton, I. (1687). Philosophia naturalis principia mathematica. 

Norman, D. A., & Society(U.S.), C. S. (1981). What is cognitive science? In D. A. 

Norman (Ed.), Perspectives on cognitive science. Norwood, N.J. : Ablex Pub. Corp. ; 

Hillsdale, N.J. : L. Erlbaum Associates. 

Nurminen, A. (2008). Mobile 3D City Maps. IEEE Computer Graphics and Applications, 

28(4), 20–31. 

O’Keefe, J. (1991). An allocentric spatial model for the hippocampal cognitive map. 

Hippocampus, 1(3), 230–235. 

O’Keefe, J., Burgess, N., Donnett, J. G., Jeffery, K. J., & Maguire, E. A. (1998). Place 

cells, navigational accuracy, and the human hippocampus. Philosophical 

Transactions of the Royal Society of London. Series B, Biological Sciences, 

353(1373), 1333–40. 

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary 

evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–

175. 

O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford 

University Press. 



 

181 

 

   

O’Neill, M. J. (1992). Effects of familiarity and plan complexity on wayfinding in 

simulated buildings. Journal of Environmental Psychology, 12(4), 319–327. 

Oulasvirta, A., Estlander, S., & Nurminen, A. (2009). Embodied interaction with a 3D 

versus 2D mobile map. Personal and Ubiquitous Computing, 13(4), 303–320. 

Papadias, D., & Egenhofer, M. J. (1997). Algorithms for Hierarchical Spatial Reasoning. 

GeoInformatica, 1, 1–23. 

Passini, R. (1992). Wayfinding in architecture(2nd ed.). New York: Van Nostrand 

Reinhold Company. 
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APPENDIX  

GLOSSARY 

Alignment effect: when the reference direction of a map (visual/haptic) is 

misaligned with respect to the navigators’ facing direction in the environment, judging 

the direction of environmental features represented on the map is slower and less accurate 

than when the map is aligned with their facing direction. 

Allocentric reference system: the location and orientation of objects are 

specified with respect to the environment.  

Bearing: the direction from the navigator to a landmark, measured with respect to 

the reference direction. 

Between-floor heading shift: the angular offset between a navigator’s facing 

directions at a pair of transition points (denoted by α). It is also called the transition 

angular offset.  

Between-floor misalignment: If two floors of a building have a perspective shift 

γ, they can be said to have a misalignment between the floors.   

Between-floor overlap: if two floors of a building are overlapped, there must be 

a set of positions within the two floors co-located at the same x-y coordinates.  

Between-floor portal: portal of a vertical connector (e.g., an elevator door or a 

stairway), through which navigators enter or exit a floor via a vertical connector.  
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Bicoded representational structure: the spatial representation in surface–

traveling animals, comprising a mosaic of these locally planar bicoded map fragments 

rather than a fully integrated volumetric map, such that space in the plane of locomotion 

is represented differently from space in the orthogonal axis. 

Cognitive map: an enduring, observer-free spatial representation of the 

environment. 

Course: the direction of a navigator’s velocity vector, measured with respect to 

the reference direction. 

Decision point: the point where two route-segments meet or the intersection of 

two or more corridors / travel paths.  

Egocentric reference system: the objects and spatial relationships of the 

environment are organized with respect to the observer’s position and orientation. 

Environmental space: building-sized spaces perceived by moving through the 

space. 

Figural space: object-sized spaces perceived from one vantage point. 

Geographical space: large scale outdoor spaces experienced from symbolic 

representations, such as maps.  

Global landmarks: distant landmarks such as towers or mountain peaks that are 

visible from a large field of view / area in the environment. 
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Global reference system: spatial reference frame for the whole environmental 

space.  

Heading: the direction of a navigator’s facing direction, measured with respect to 

a reference direction. 

Horizontal transition offset: the offset between the transition point and the 

projection of the corresponding transition point on the former transition point’s floor. 

Landmarks: distinctive objects or scenes stored in memory.  

Local landmarks: landmarks visible only from a limited distance or perceptual 

field of view. 

Local reference system: spatial reference frame for local spaces.  

Multi-level cognitive maps: a globally coherent mental representation of 

multi-level built environments. This term is largely interchangeable with another term 

multi-level survey knowledge in this thesis. A multi-level cognitive map is constructed by 

integrating single-level spatial knowledge learned from different floors (local reference 

systems) into a common spatial reference frame (global reference system). It consists of 

(1) a set of super-imposed 2D cognitive maps, (2) between-floor connectivity information 

(e.g., elevators, staircases, escalators, etc.), (3) between-floor alignment information (e.g., 

indicating what is directly above/below one’s current location), and (4) encoding the 

z-axis offset (e.g., rough estimates of floor heights).  
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Multi-level landmarks: distinctive objects or scenes that are visible from 

multiple locations/levels of a multi-level built environment. In this thesis, multi-level 

landmarks are interchangeable with global landmarks.  

Multi-level route knowledge: the knowledge of travel paths that connect 

between-floor locations. Multi-level route knowledge is based on an egocentric spatial 

reference frame.  

Multi-level survey knowledge: a configurational representation of the metric 

spatial relationship between environmental features across multiple floors organized 

within a common spatial reference frame. See multi-level cognitive maps. 

Path integration: the process of obtaining rotational displacements by updating 

heading information during vertical transition.  

Perspective shift: the angular offset that is necessary to move from one reference 

frame to the next. It consists of both a translation and a rotation component. The rotation 

component is denoted as γ. 

Piloting: the use of configurations of landmarks to determine one’s location or 

heading. 

Portal-floor heading shift: angular offset between the reference direction of a 

floor and a navigator’s heading when entering/exiting a between-floor portal, denoted as 

β. 
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Reference direction: the orientation of a reference frame.  

Region: perceived and encoded representations in spatial memory in which 

locations are grouped within a common spatial reference frame and form super-ordinate 

nodes. 

Route: a trace in the environment of a traveled sequence of path segments and 

turn angles that are followed in order to get from an origin to a destination.  

Route knowledge: the knowledge of travel paths that connect landmarks. 

Spatial reference frames: a relational system that consists of reference objects, 

located objects, and the spatial relations that may exist among them. This is also called a 

spatial frame of reference. 

Spatial reference systems: a relational system that consists of reference objects, 

located objects, and the spatial relations that may exist among them.  

Survey knowledge: a configurational representation of spatial relationships 

between non-linearly-aligned sets of environmental features such as routes and landmarks, 

organized within a common spatial reference frame.  

Transition angular offset: the angular offset between navigators’ facing 

directions at a pair of transition points. It is also called the between-floor heading shift 

(denoted by α).  

Transition point: a point where navigators enter or exit a floor.  
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Vertical connectors: elevators, staircases, escalators, etc., supporting users in 

navigating between floors/levels. 

Vertical transition: navigators use vertical connectors (e.g., elevators, staircases, 

escalators, etc.) to navigate between floors.  

Vertical transition offset: the z-axis offset between a pair of transition points 

located at different floors. 

Vista space: room-sized spaces perceived from one vantage but allowing for head 

rotation.  

Z-axis offset: vertical distance between floors. A multi-level building contains 

multiple floors and each floor has a z-axis value (e.g. floor height), meaning that different 

floors have a z-axis offset.  
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