1,330 research outputs found

    Validation of scenario-based business requirements with Coloured Petri Nets

    Get PDF
    A scenario can be used to describe a possible instantiation of a given business use case and can be expressed for example as a list of steps written in natural language, or by an interaction diagram. This paper discusses how a collection of scenarios, all expressed as UML2 sequence diagrams, can be described for validation purposes by a single model, written in the Coloured Petri Nets (CPN) modelling language. Due to the support for parallelism given by the CPN language, the obtained CPN model can: (1) simultaneously execute several scenarios; and (2) elegantly represent the parallel activities inside a scenario. This two-level parallelism is crucial during validation, since it allows one to detect problems that are only evident when several scenarios are in simultaneous execution and may affect each other. We exemplify our approach in a system that has a rich set of interactions with its users.Fundação para a CiĂȘncia e a Tecnologia (FCT) - bolsa SFRH/BD/19718/2004, programa PTDC/EIA/70271/2006 “AMADEUS: Aspects and Compiler Optimizations for Matlab System Development

    Eighth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 22-24, 2007

    Get PDF
    This booklet contains the proceedings of the Eighth Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 22-24, 2007. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0

    Model Driven Development and Maintenance of Business Logic for Information Systems

    Get PDF
    Since information systems become more and more important in today\''s society, business firms, organizations, and individuals rely on these systems to manage their daily business and social activities. The dependency of possibly critical business processes on complex IT systems requires a strategy that supports IT departments in reducing the time needed to implement changed or new domain requirements of functional departments. In this context, software models help to manage system\''s complexity and provide a tool for communication and documentation purposes. Moreover, software engineers tend to use automated software model processing such as code generation to improve development and maintenance processes. Particularly in the context of web-based information systems, a number of model driven approaches were developed. However, we believe that compared to the user interface layer and the persistency layer, there could be a better support of consistent approaches providing a suitable architecture for the consistent model driven development of business logic. To ameliorate this situation, we developed an architectural blueprint consisting of meta models, tools, and a method support for model driven development and maintenance of business logic from analysis until system maintenance. This blueprint, which we call Amabulo infrastructure, consists of five layers and provides concepts and tools to set up and apply concrete infrastructures for model driven development projects. Modeling languages can be applied as needed. In this thesis we focus on business logic layers of J2EE applications. However, concrete code generation rules can be adapted easily for different target platforms. After providing a high-level overview of our Amabulo infrastructure, we describe its layers in detail: The Visual Model Layer is responsible for all visual modeling tasks. For this purpose, we discuss requirements for visual software models for business logic, analyze several visual modeling languages concerning their usefulness, and provide an UML profile for business logic models. The Abstract Model Layer provides an abstract view on the business logic model in the form of a domain specific model, which we call Amabulo model. An Amabulo model is reduced to pure logical information concerning business logic aspects. It focuses on information that is relevant for the code generation. For this purpose, an Amabulo model integrates model elements for process modeling, state modeling, and structural modeling. It is used as a common interface between visual modeling languages and code generators. Visual models of the Visual Model Layer are automatically transformed into an Amabulo model. The Abstract System Layer provides a formal view onto the system in the form of a Coloured Petri Net (CPN). A Coloured Petri Net representation of the modeled business logic is a formal structure and independent of the actual business logic implementation. After an Amabulo model is automatically transformed into a CPN, it can be analyzed and simulated before any line of code is generated. The Code Generation Layer is responsible for code generation. To support the design and implementation of project-specific code generators, we discuss several aspects of code integration issues and provide object-oriented design approaches to tackle the issues. Then, we provide a conceptual mapping of Amabulo model elements into architectural elements of a J2EE infrastructure. This mapping explicitly considers robustness features, which support a later manual integration of generated critical code artifacts and external systems. The Application Layer is the target layer of an Amabulo infrastructure and comprises generated code artifacts. These artifacts are instances of a specific target platform specification, and they can be modified for integration purposes with development tools. Through the contributions in this thesis, we aim to provide an integrated set of solutions to support an efficient model driven development and maintenance process for the business logic of information systems. Therefore, we provide a consistent infrastructure blueprint that considers modeling tasks, model analysis tasks, and code generation tasks. As a result, we see potential for reducing the development and maintenance efforts for changed domain requirements and simultaneously guaranteeing robustness and maintainability even after several changes

    Executable system architecting using systems modeling language in conjunction with Colored Petri Nets - a demonstration using the GEOSS network centric system

    Get PDF
    Models and simulation furnish abstractions to manage complexities allowing engineers to visualize the proposed system and to analyze and validate system behavior before constructing it. Unified Modeling Language (UML) and its systems engineering extension, Systems Modeling Language (SysML), provide a rich set of diagrams for systems specification. However, the lack of executable semantics of such notations limits the capability of analyzing and verifying defined specifications. This research has developed an executable system architecting framework based on SysML-CPN transformation, which introduces dynamic model analysis into SysML modeling by mapping SysML notations to Colored Petri Net (CPN), a graphical language for system design, specification, simulation, and verification. A graphic user interface was also integrated into the CPN model to enhance the model-based simulation. A set of methodologies has been developed to achieve this framework. The aim is to investigate system wide properties of the proposed system, which in turn provides a basis for system reconfiguration --Abstract, page iii

    Scenario-based modeling in industrial information systems

    Get PDF
    This manuscript addresses the creation of scenario-based models to reason about the behavior of existing industrial information systems. In our approach the system behavior is modeled in two steps that gradually introduce detail and formality. This manuscript addresses the first step, where text-based descriptions, in the form of structured rules, are used to specify how the system is or should be regulated. Those rules can be used to create behavioral snapshots, which are collections of scenario-based descriptions that represent different instances of the system behavior. Snapshots are specified in an intuitive and graphical notation that considers the elements from the problem domain and permit designers to discuss and validate the externally observable behavior, together with the domain experts. In the second step (not fully covered in this manuscript), the system behavior is formalized with an executable model. This formal model, which in our approach is specified using the Colored Petri Net (CP-nets) language, allows the system internal behavior to be animated, simulated, and optimized. The insights gained by experimenting with the formal model can be subsequently used for reengineering the existing system

    Customizable service-oriented Petri net controllers

    Get PDF
    In industrial automation, service-orientation is a relatively new and ascending concept and thus, concrete integrated methodologies are missing to accomplish the required development tasks. A suitable approach is to use the powerful set of features that Petri nets formalism provides for such dynamic systems. This paper presents a token game template that is part of the open methodology for the development of customized Petri nets controllers, targeting the engineering of service-oriented industrial automation. This template is based on a state machine specification for the life-cycle of transitions that leaves several options open for extending it with features depending on the application. The practical use and implementation should bring, among others, featured-full and integrated modeling, analysis and control capabilities, which is required by service-oriented ecosystems. This core structure was used and validated in the development of control applications for an industrial automation system.The authors would like to thank the European Commission and the partners of the EU IST FP6 project “Service-Oriented Cross-layer infrastructure for Distributed smart Embedded devices” (SOCRADES), the EU FP6 “Network of Excellence for Innovative Production Machines and Systems” (I*PROMS), and the European ICT FP7 project “Cooperating Objects Network of Excellence” (CONET) for their support

    E-BioFlow: Different Perspectives on Scientific Workflows

    Get PDF
    We introduce a new type of workflow design system called\ud e-BioFlow and illustrate it by means of a simple sequence alignment workflow. E-BioFlow, intended to model advanced scientific workflows, enables the user to model a workflow from three different but strongly coupled perspectives: the control flow perspective, the data flow perspective, and the resource perspective. All three perspectives are of\ud equal importance, but workflow designers from different domains prefer different perspectives as entry points for their design, and a single workflow designer may prefer different perspectives in different stages of workflow design. Each perspective provides its own type of information, visualisation and support for validation. Combining these three perspectives in a single application provides a new and flexible way of modelling workflows

    The Impact of Petri Nets on System-of-Systems Engineering

    Get PDF
    The successful engineering of a large-scale system-of-systems project towards deterministic behaviour depends on integrating autonomous components using international communications standards in accordance with dynamic requirements. To-date, their engineering has been unsuccessful: no combination of top-down and bottom-up engineering perspectives is adopted, and information exchange protocol and interfaces between components are not being precisely specified. Various approaches such as modelling, and architecture frameworks make positive contributions to system-of-systems specification but their successful implementation is still a problem. One of the most popular modelling notations available for specifying systems, UML, is intuitive and graphical but also ambiguous and imprecise. Supplying a range of diagrams to represent a system under development, UML lacks simulation and exhaustive verification capability. This shortfall in UML has received little attention in the context of system-of-systems and there are two major research issues: 1. Where the dynamic, behavioural diagrams of UML can and cannot be used to model and analyse system-of-systems 2. Determining how Petri nets can be used to improve the specification and analysis of the dynamic model of a system-of-systems specified using UML This thesis presents the strengths and weaknesses of Petri nets in relation to the specification of system-of-systems and shows how Petri net models can be used instead of conventional UML Activity Diagrams. The model of the system-of-systems can then be analysed and verified using Petri net theory. The Petri net formalism of behaviour is demonstrated using two case studies from the military domain. The first case study uses Petri nets to specify and analyse a close air support mission. This case study concludes by indicating the strengths, weaknesses, and shortfalls of the proposed formalism in system-of-systems specification. The second case study considers specification of a military exchange network parameters problem and the results are compared with the strengths and weaknesses identified in the first case study. Finally, the results of the research are formulated in the form of a Petri net enhancement to UML (mapping existing activity diagram elements to Petri net elements) to meet the needs of system-of-systems specification, verification and validation

    Considerations for modelling critical infrastructure systems

    Full text link
    The paper commences by reviewing and examining the structure of critical infrastructure systems from a holistic viewpoint, before venturing towards determining what are the necessary considerations required for modelling a specific system within the layered structural context of the larger holistic system.<br /
    • 

    corecore